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This manual documents the usage of StarPU version 1.4.8. Its contents was last updated on 2025-06-16.

Copyright © 2009-2025 University of Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.
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Chapter 1

Organization

This part shows how to measure application performances.

« Chapter Benchmarking StarPU introduces some interesting benchmarks which can be found in StarPU
sources.

» Chapter Online Performance Tools gives information on online performance monitoring tools to help you an-
alyze your program

» Chapter Offline Performance Tools gives information on offline performance tools such as a FxT library to
trace execution data and tasks and a StarPU Eclipse Plugin to visualize data traces directly from the Eclipse
IDE.
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Chapter 2

Benchmarking StarPU

Some interesting benchmarks are installed among examples in $STARPU_PATH/1ib/starpu/examples/.
Make sure to try various schedulers, for instance STARPU__SCHED=dmda.

2.1 Task Size Overhead

This benchmark gives a glimpse into how long a task should be (in ps) for StarPU overhead to be low enough
to keep efficiency. Running tasks_size_overhead. sh generates a plot of the speedup of tasks of various
sizes, depending on the number of CPUs being used.
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2.2 Data Transfer Latency

local_pingpong performs a ping-pong between the first two CUDA nodes, and prints the measured latency.
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6 Benchmarking StarPU

2.3 Matrix-Matrix Multiplication

sgemm and dgemm perform a blocked matrix-matrix multiplication using BLAS and cuBLAS. They output the ob-
tained GFlops.

2.4 Cholesky Factorization

cholesky_x perform a Cholesky factorization (single precision). They use different dependency primitives.

2.5 LU Factorization

1u_x perform an LU factorization. They use different dependency primitives.

2.6 Simulated Benchmarks

It can also be convenient to try simulated benchmarks, if you want to give a try at CPU-GPU scheduling without
actually having a GPU at hand. This can be done by using the SimGrid version of StarPU: first install the SimGrid
simulator from https://simgrid.org/ (we tested with SimGrid from 3.11 to 3.16, and 3.18 to 3.30. SimGrid
versions 3.25 and above need to be configured with ~-Denable_msg=0N. Other versions may have compatibility
issues, 3.17 notably does not build at all. MPI simulation does not work with version 3.22). Then configure StarPU
with --enable-simgrid and rebuild and install it, and then you can simulate the performance for a few virtualized
systems shipped along StarPU: attila, mirage, idgraf, and sirocco.

For instance:

$ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
$ export STARPU_HOSTNAME=attila
$ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960%20)) -nblocks 20

Will show the performance of the cholesky factorization with the attila system. It will be interesting to try with different
matrix sizes and schedulers.

Performance models are available for cholesky_x*, 1u_x*, xgemm, with block sizes 320, 640, or 960 (plus 1440
for sirocco), and for stencil with block size 128x128x128, 192x192x192, and 256x256x256.

Read Chapter SimGridSupport for more information on the SimGrid support.
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Chapter 3

Online Performance Tools

3.1 On-line Performance Feedback

Some examples which apply online performance monitoring are in the directory tests/perfmodels/

3.1.1 Enabling On-line Performance Monitoring

In order to enable online performance monitoring, the application can call starpu_profiling_status_set() with the pa-
rameter STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring is already enabled or not
by calling starpu_profiling_status_get(). Enabling monitoring also reinitialize all previously collected feedback.
The environment variable STARPU_PROFILING can also be set to 1 to achieve the same effect. The function
starpu_profiling_init() can also be called during the execution to reinitialize performance counters and to start the
profiling if the environment variable STARPU_PROFILING is set to 1.

Likewise, performance monitoring is stopped by calling starpu_profiling_status_set() with the parameter
STARPU_PROFILING_DISABLE. Note that this does not reset the performance counters so that the applica-
tion may consult them later on.

More details about the performance monitoring API are available in Profiling.

3.1.2 Per-task Feedback

If profiling is enabled, a pointer to a structure starpu_profiling_task_info is put in the field starpu_task::profiling_info
when a task terminates. This structure is automatically destroyed when the task structure is destroyed, either
automatically or by calling starpu_task_destroy().

The structure starpu_profiling_task_info indicates the date when the task was submitted (starpu_profiling_task_info::submit_time),
started (starpu_profiling_task_info::start_time), and terminated (starpu_profiling_task_info::end_time), relative to
the initialization of StarPU with starpu_init(). User can call starpu_timing_timespec_delay_us() to calculate the time
elapsed between start time and end time in microseconds. It also specifies the identifier of the worker that has
executed the task (starpu_profiling_task_info::workerid). These dates are stored as t imespec structures which
users may convert into micro-seconds using the helper function starpu_timing_timespec_to_us(). User can call
starpu_worker_get_current_task_exp_end() to get the date when the current task is expected to be finished.

When ::STARPU_ENERGY_PROFILING is enabled, starpu_profiling_task_info::energy_consumed, provides the
amount of Joules used by the task.

It is worth noting that the application may directly access this structure from the callback executed at the end of the
task. The structure starpu_task associated to the callback currently being executed is indeed accessible with the
function starpu_task_get_current().

3.1.3 Per-codelet Feedback

The field starpu_codelet::per_worker_stats is an array of counters. Unless the STARPU_CODELET_PROFILING
environment variable was set to 0, the i-th entry of the array is incremented every time a task implementing the
codelet is executed on the i-th worker. This array is not reinitialized when profiling is enabled or disabled. The
function starpu_codelet_display_stats() can be used to display the execution statistics of a specific codelet.
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8 Online Performance Tools

3.1.4 Per-worker Feedback

The second argument returned by the function starpu_profiling_worker_get_info() is a structure starpu_profiling_worker_info
that gives statistics about the specified worker. This structure specifies:

* In starpu_profiling_worker_info::start_time, when StarPU started collecting profiling information for that
worker.

« In starpu_profiling_worker_info::total_time, the duration of the profiling measurement interval.

« In starpu_profiling_worker_info::executed_tasks, the number of tasks that were executed while profiling was
enabled.

It also specifies how much time was spent in various states (executing a task, executing a callback, waiting for a data
transfer to complete, etc.). Since these can happen at the same time (waiting for a data transfer while executing the
previous tasks, and scheduling the next task), we provide two views. Firstly, the "all" view:

« In starpu_profiling_worker_info::all_executing_time, the time spent executing kernels, thus real useful work.
« In starpu_profiling_worker_info::all_callback_time, the time spent executing application callbacks.
« In starpu_profiling_worker_info::all_waiting_time, the time spent waiting for data transfers.

* In starpu_profiling_worker_info::all_sleeping_time, the time spent during which there was no task to be exe-
cuted, i.e. lack of parallelism.

 In starpu_profiling_worker_info::all_scheduling_time, the time spent scheduling tasks.

But these times overlap, notably with GPUs the schedulers runs while tasks are getting executed. Another view is the
"split" view, which eliminates the overlapping, by considering for instance that it does not matter what is happening
while tasks are getting executed, that should be accounted for "executing” time, and e.g. only the scheduling periods
that happen while no task is getting executed should be accounted in "scheduling" time. More precisely:

 In starpu_profiling_worker_info::executing_time, the time spent executing kernels, normally equal to
starpu_profiling_worker_info::all_executing_time.

« In starpu_profiling_worker_info::callback_time, the time spent executing application callbacks while not exe-
cuting a task.

« In starpu_profiling_worker_info::waiting_time, the time spent waiting for data transfers while not executing a
task or a callback.

« In starpu_profiling_worker_info::sleeping_time, the time spent during which there was no task to be executed
and not executing a task or a callback or waiting for a data transfer, i.e. real lack of parallelism.

« In starpu_profiling_worker_info::scheduling_time, the time spent scheduling tasks while not executing a task
or a callback or waiting for a data transfer to finish, and there are tasks to be scheduled.

This thus provides a split of the starpu_profiling_worker_info::total_time into various states. The difference between
starpu_profiling_worker_info::total_time and the sum of this split is the remaining uncategorized overhead of the
runtime.

Calling starpu_profiling_worker_get_info() resets the profiling information associated to a worker.

To easily display all this information, the environment variable STARPU_WORKER_STATS can be set to 1 (in
addition to setting STARPU_PROFILING to 1). A summary will then be displayed at program termination. To display
the summary in a file instead of the standard error stream, use the environment variable STARPU_WORKER_+«
STATS_FILE.

Worker stats:

CUDA 0.0 (Tesla M2075 4.7 GiB 03:00.0)
133 task(s)
time split: total 3212.86 ms = executing: 1588.56 ms + callback: 2.95 ms + waiting: 5.34 ms + sleepinc
all time: executing: 1588.56 ms callback: 2.95 ms waiting: 22.83 ms sleeping: 1725.93 ms scheduling: 1
286.388333 GFlop/s

CPU 0
10 task (s)
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3.1 On-line Performance Feedback 9

time split: total 3212.89 ms = executing: 2117.19 ms + callback: 0.23 ms + waiting:
all time: executing: 2117.19 ms callback: 0.23 ms waiting: 0.0l ms sleeping:
22.029695 GFlop/s

CPU 1
10 task(s)
time split: total 3212.92 ms = executing: 2116.18 ms + callback: 0.17 ms + waiting:
all time: executing: 2116.18 ms callback: 0.17 ms waiting: 0.0l ms sleeping:
22.029487 GFlop/s

CPU 2
10 task (s)
time split: total 3212.94 ms = executing: 2116.08 ms + callback: 0.18 ms + waiting:
all time: executing: 2116.08 ms callback: 0.18 ms waiting: 0.0l ms sleeping:
22.029343 GFlop/s

Global time split: total 12851.60 ms = executing: 7938.01 ms (61.77%) + callback: 3.53 ms (0.03%)

The number of GFlops/s is available because the starpu_task::flops field of the tasks were filled (or STARPU_FLOPS
used in starpu_task_insert()).

When an FxT trace is generated (see Generating Traces With FxT), it is also possible to use the tool starpu_«
workers_activity (see Monitoring Activity) to generate a graphic showing the evolution of these values during
the time, for the different workers.

3.1.5 Bus-related Feedback

The bus speed measured by StarPU can be displayed by using the tool starpu_machine_display, for
instance:

StarPU has found:
3 CUDA devices

CUDA 0 (Tesla C2050 02:00.0)

CUDA 1 (Tesla C2050 03:00.0)

CUDA 2 (Tesla C2050 84:00.0)
from to RAM to CUDA O to CUDA 1 to CUDA 2
RAM 0.000000 5176.530428 5176.492994 5191.710722
CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
CUDA 2 4534.229519 2417.069025 2417.060863 0.000000

Statistics about the data transfers which were performed and temporal average of bandwidth usage can be obtained
by setting the environment variable STARPU_BUS_STATS to 1; a summary will then be displayed at program
termination. To display the summary in a file instead of the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE.

Data transfer stats:

RAM 0 -> CUDA 0 319.92 MB 213.10 MB/s (transfers 91 - avg 3.52 MB)
CUDA 0 -> RAM 0 214.45 MB 142.85 MB/s (transfers 61 - avg 3.52 MB)
RAM 0 -> CUDA 1 302.34 MB 201.39 MB/s (transfers 86 — avg 3.52 MB)
CUDA 1 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 1 144.14 MB 96.01 MB/s (transfers 41 - avg 3.52 MB)
CUDA 1 —-> CUDA O 130.08 MB 86.64 MB/s (transfers : 37 - avg 3.52 MB)
RAM 0 -> CUDA 2 312.89 MB 208.42 MB/s (transfers 89 - avg 3.52 MB)
CUDA 2 -> RAM 0 133.59 MB 88.99 MB/s (transfers 38 - avg 3.52 MB)
CUDA 0 -> CUDA 2 151.17 MB 100.69 MB/s (transfers : 43 - avg 3.52 MB)
CUDA 2 -> CUDA 0 105.47 MB 70.25 MB/s (transfers 30 - avg 3.52 MB)
CUDA 1 -> CUDA 2 175.78 MB 117.09 MB/s (transfers 50 - avg 3.52 MB)
CUDA 2 -> CUDA 1 203.91 MB 135.82 MB/s (transfers 58 - avg 3.52 MB)
Total transfers: 2.27 GB

3.1.6 MPI-related Feedback

Statistics about the data transfers which were performed over MPI can be obtained by setting the environment
variable STARPU_MPI_STATS to 1; a summary will then be displayed at program termination:

[starpu_comm_stats] [1] T
[starpu_comm_stats] [1:0]

OTAL: 456.

456.

000000 B
000000 B

0.000435 MB
0.000435 MB

0.000188
0.000188

B/s
B/s

0.000000 MB/s
0.000000 MB/s
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10 Online Performance Tools

[starpu_comm_stats] [0] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats] [0:1] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using StarPU tool starpu_mpi_comm_matrix.py (see MPIDe-
bug).

3.2 Task And Worker Profiling

A full example showing how to use the profiling APl is available in the StarPU sources in the directory
examples/profiling/.

struct starpu_task xtask = starpu_task_create();

task->cl = &cl;

task->synchronous = 1;

/* We will destroy the task structure by hand so that we can

*+ query the profiling info before the task is destroyed. =/

task->destroy = 0;

/* Submit and wait for completion (since synchronous was set to 1) x/
starpu_task_submit (task);

/+ The task is finished, get profiling information */

struct starpu_profiling_task_info xinfo = task->profiling_info;

/% How much time did it take before the task started ? x/

double delay += starpu_timing timespec_delay_us (&info->submit_time, &info->start_time);
/* How long was the task execution ? x/

double length += starpu_timing_timespec_delay_us (&info->start_time, &info->end_time);
/+ We no longer need the task structure x/

starpu_task_destroy (task);

/+ Display the occupancy of all workers during the test =/

int worker;

for (worker = 0; worker < starpu_worker_get_count (); worker++)

{

struct starpu_profiling worker_info worker_info;

int ret = starpu_profiling _worker_get_info (worker, &worker_info);

STARPU_ASSERT (!ret);

double total_time = starpu_timing_timespec_to_us (&worker_info.total_time);

double executing_time = starpu_timing_timespec_to_us (&worker_info.executing_time) ;
double sleeping_time = starpu_timing_timespec_to_us (&worker_info.sleeping_time);
double overhead_time = total_time - executing_time - sleeping time;

float executing_ratio = 100.0xexecuting_time/total_time;

float sleeping_ratio = 100.0xsleeping_time/total_time;

float overhead_ratio = 100.0 - executing_ratio - sleeping_ratio;

char workername[128];
starpu_worker_get_name (worker, workername, 128);
fprintf (stderr, "Worker %s:\n", workername) ;

fprintf (stderr, "\ttotal time: %.21f ms\n", total_timexle-3);

fprintf (stderr, "\texec time: %.21f ms (%.2f %%)\n", executing_timexle-3, executing_ratio);
fprintf (stderr, "\tblocked time: %.21f ms (%.2f %%)\n", sleeping_timexle-3, sleeping_ratio);
fprintf (stderr, "\toverhead time: %.21f ms (%.2f %%)\n", overhead_timexle-3, overhead_ratio);

3.3 Performance Model Example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in advance the duration of a
task. This is done by giving to codelets a performance model, by defining a structure starpu_perfmodel and provid-
ing its address in the field starpu_codelet::model. The fields starpu_perfmodel::symbol and starpu_perfmodel::type
are mandatory, to give a name to the model, and the type of the model, since there are several kinds of perfor-
mance models. Then starpu_task_get_model_name() can be called to retrieve the name of the performance model
associated with a task. For compatibility, make sure to initialize the whole structure to zero, either by using explicit
memset(), or by letting the compiler implicitly do it as examplified below.

* Measured at runtime (model type STARPU_HISTORY_BASED). This assumes that for a given set of
data input/output sizes, the performance will always be about the same. This is very true for regular ker-
nels on GPUs for instance (<0.1% error), and just a bit less true on CPUs (~=1% error). This also as-
sumes that there are few different sets of data input/output sizes. StarPU will then keep record of the
average time of previous executions on the various processing units, and use it as an estimation. His-
tory is done per task size, by using a hash of the input and output sizes as an index. It will also save
it in SSTARPU_HOME/ . starpu/sampling/codelets for further executions, and can be observed
by using the tool starpu_perfmodel_display, or drawn by using the tool starpu_perfmodel+«
_plot (PerformanceModelCalibration). The models are indexed by machine name. To share the mod-
els between machines (e.g. for a homogeneous cluster), use export STARPU_HOSTNAME=some+«
_global_name. Measurements are only done when using a task scheduler which makes use of it,
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3.3 Performance Model Example 11

such as dmda. Measurements can also be provided explicitly by the application, by using the function
starpu_perfmodel_update_history(). An example is in the file tests/perfmodels/feed.c.

The following is a small code example.

If e.g. the code is recompiled with other compilation options, or several variants of the code are used, the
symbol string should be changed to reflect that, in order to recalibrate a new model from zero. The symbol
string can even be constructed dynamically at execution time, as long as this is done before submitting any
task using it.

static struct starpu_perfmodel mult_perf model =
{
.type = STARPU_HISTORY_BASED,
.symbol = "mult_perf_model"
}i
struct starpu_codelet cl =

{

.cpu_funcs = { cpu_mult },

.cpu_funcs_name = { "cpu_mult" 1},
.nbuffers = 3,

.modes = { STARPU_R, STARPU_R, STARPU_W },

/+ for the scheduling policy to be able to use performance models =/
.model = &mult_perf model
i

* Measured at runtime and refined by regression (model types STARPU_REGRESSION_BASED and
STARPU_NL_REGRESSION_BASED). This still assumes performance regularity, but works with various
data input sizes, by applying regression over observed execution times. STARPU_REGRESSION_BASED
uses an axn”b regression form, STARPU NL REGRESSION BASED uses an a*n”b+c (more precise
than STARPU_REGRESSION_BASED, but costs a lot more to compute).

For instance, tests/perfmodels/regression_based.c uses a regression-based performance
model for the function memset ().

Of course, the application has to issue tasks with varying size so that the regression can be computed.
StarPU will not trust the regression unless there is at least 10% difference between the minimum and max-
imum observed input size. It can be useful to set the environment variable STARPU_CALIBRATE to 1 and
run the application on varying input sizes with STARPU_SCHED set to dmda scheduler, to feed the per-
formance model for a variety of inputs. The application can also provide the measurements explicitly by
using the function starpu_perfmodel_update_history(). The tools starpu_perfmodel_display and
starpu_perfmodel_plot can be used to observe how much the performance model is calibrated
(PerformanceModelCalibration); when their output looks good, STARPU_CALIBRATE can be reset to 0 to
let StarPU use the resulting performance model without recording new measures, and STARPU_SCHED can
be set to dmda to benefit from the performance models. If the data input sizes vary a lot, it is really important
to set STARPU_CALIBRATE to 0, otherwise StarPU will continue adding the measures, and result with a very
big performance model, which will take time a lot of time to load and save.

For non-linear regression, since computing it is quite expensive, it is only done at termination of the applica-
tion. This means that the first execution of the application will use only history-based performance model to
perform scheduling, without using regression.

+ Another type of model is STARPU_MULTIPLE_REGRESSION_BASED, which is based on multiple linear
regression. In this model, users define both the relevant parameters and the equation for computing the task
duration.

Trernel = @+ b(M® % NP s K7) 4 (M2 « NP2« K72) 4 ...

M, N, K are the parameters of the task, added at the task creation. These need to be extracted by the
cl_perf_func function, which should be defined by users. «, 3,y are the exponents defined by users in
model->combinations table. Finally, coefficients a, b, c are computed automatically by the StarPU at
the end of the execution, using least squares method of the dge1s_ LAPACK function.

examples/mlr/mlr.c example provides more details on the usage of STARPU_MULTIPLE_REGRESSION_BASED
models. The --enable-mlr configure option needs to be set to calibrate the model.

Coefficients computation is done at the end of the execution, and the results are stored in standard codelet
perfmodel files. Additional files containing the duration of tasks together with the value of each parameter are
stored in .starpu/sampling/codelets/tmp/ directory. These files are reused when STARPU_«
CALIBRATE environment variable is set to 1, to recompute coefficients based on the current, but also on
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12 Online Performance Tools

the previous executions. By default, StarPU uses a lightweight dgels implementation, but the --enable-mlr-
system-blas configure option can be used to make StarPU use a system-provided dgels BLAS.

Additionally, when multiple linear regression models are not enabled through --enable-mir or when the
model->combinations are notdefined, StarPU will still write output filesinto . starpu/sampling/codelets/tmp;/
to allow performing an analysis. This analysis typically aims at finding the most appropriate equation for the
codelet and tools/starpu_mlr_analysis script provides an example of how to perform such study.

* Provided as an estimation from the application itself (model type STARPU_COMMON and field
starpu_perfmodel::.cost_function), see for instance examples/common/blas_model.h and
examples/common/blas_model.c

» Provided explicitly by the application (model type STARPU_PER_ARCH): either field starpu_perfmodel::arch_cost_function,
orthefields .per_arch[arch] [nimpl].cost_function have to be filled with pointers to functions
which return the expected duration of the task in micro-seconds, one per architecture, see for instance
tests/datawizard/locality.c

» Provided explicity by the application (model type STARPU_PER_WORKER) similarly with the
starpu_perfmodel::worker_cost_function field.

For STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, and STARPU_NL_REGRESSION_BASED,
the dimensions of task data (both input and output) are used as an index by default. STARPU_HISTORY_BASED
uses a CRC hash of the dimensions as an index to distinguish histories, and STARPU_REGRESSION_BASED
and STARPU_NL_REGRESSION_BASED use the total size as an index for the regression. (Data marked with
STARPU_NOFOQOTPRINT are not taken into account).

The starpu_perfmodel::size_base and starpu_perfmodel::footprint fields however permit the application to override
that, when for instance some of the data do not matter for task cost (e.g. mere reference table), or when using sparse
structures (in which case it is the number of non-zeros which matter), or when there is some hidden parameter
such as the number of iterations, or when the application actually has a very good idea of the complexity of the
algorithm, and just not the speed of the processor, etc. The example in the directory examples/pi uses this to
include the number of iterations in the base size. starpu_perfmodel::size_base should be used when the variance
of the actual performance is known (i.e. bigger return value is longer execution time), and thus particularly useful
for STARPU_REGRESSION_BASED or STARPU_NL_REGRESSION_BASED. starpu_perfmodel::footprint can be
used when the variance of the actual performance is unknown (irregular performance behavior, etc.), and thus only
useful for STARPU_HISTORY_BASED. starpu_task_data_footprint() can be used as a base and combined with
other parameters through starpu_hash_crc32c¢_be() for instance.

StarPU will automatically determine when the performance model is calibrated, or rather, it will assume the perfor-
mance model is calibrated until the application submits a task for which the performance can not be predicted. For
STARPU_HISTORY_BASED, StarPU will require 10 (STARPU_CALIBRATE_MINIMUM) measurements for a given
size before estimating that an average can be taken as estimation for further executions with the same size. For
STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_BASED, StarPU will require 10 (STARPU+«
_CALIBRATE_MINIMUM) measurements, and that the minimum measured data size is smaller than 90% of the
maximum measured data size (i.e. the measurement interval is large enough for a regression to have a meaning).
Calibration can also be forced by setting the STARPU_CALIBRATE environment variable to 1, or even reset by
setting it to 2.

How to use schedulers which can benefit from such performance model is explained in TaskSchedulingPolicy.

The same can be done for task energy consumption estimation, by setting the field starpu_codelet::energy_model
the same way as the field starpu_codelet::model. Note: for now, the application has to give to the energy consump-
tion performance model a name which is different from the execution time performance model.

The application can request time estimations from the StarPU performance models by filling a task structure as
usual without actually submitting it. The data handles can be created by calling any of the functions starpu_x*_«
data_register with a NULL pointer and —1 node and the desired data sizes, and need to be unregistered as
usual. The functions starpu_task_expected_length() and starpu_task_expected_energy() can then be called to get
an estimation of the task cost on a given arch. starpu_task_footprint() can also be used to get the footprint used for
indexing history-based performance models. starpu_task_destroy() needs to be called to destroy the dummy task
afterwards. See tests/perfmodels/regression_based. c for an example.

The application can also request an on-the-fly XML report of the performance model, by calling starpu_perfmodel_dump_xml()
to print the report to a FILEx*.
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3.4 Performance Monitoring Counters

This section presents the StarPU performance monitoring framework. It summarizes the objectives of the frame-
work. It then introduces the entities involved in the framework. It presents the API of the framework, as well as
some implementation details. It exposes the typical sequence of operations to plug an external tool to monitor a
performance counter of StarPU.

3.4.1 Objectives

The objectives of this framework are to let external tools interface with StarPU to collect various performance metrics
at runtime, in a generic, safe, extensible way. For that, it enables such tools to discover the available performance
metrics in a particular StarPU build, as well as the type of each performance counter value. It lets these tools build
sets of performance counters to monitor, and then register listener callbacks to collect the measurement samples
of these sets of performance counters at runtime.

3.4.2 Entities

The performance monitoring framework is built on a series of concepts and items, organized consistently. The
corresponding C language objects should be considered opaque by external tools, and should only be manipulated
through proper function calls and accessors.

3.4.2.1 Performance Counter

The performance counter entity is the fundamental object of the framework, representing one piece of performance
metrics, such as for instance the total number of tasks submitted so far, that is exported by StarPU and can be col-
lected through the framework at runtime. A performance counter has a type and belongs to a scope. A performance
counter is designated by a unique name and unique ID integer. We can start or stop collecting performance counter
values by using starpu_perf_counter_collection_start() and starpu_perf_counter_collection_stop().

3.4.2.2 Performance Counter Type

A performance counter has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition

"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single-precision floating point
"double” 64-bit double-precision floating point

3.4.2.3 Performance Counter Scope

A performance counter belongs to a scope. The scope of a counter defines the context considered for computing the
corresponding performance counter. A scope is designated with a uniqgue name and unique ID number. Currently,
defined scopes include:

Scope Name Scope Definition

"global" Counter is global to the StarPU instance
"per_worker" Counter is within the scope of a thread worker
"per_codelet" | Counter is within the scope of a task codelet

3.4.2.4 Performance Counter Set

A performance counter set is a subset of the performance counters belonging to the same scope. Each counter of
the scope can be in the enabled or disabled state in a performance counter set. A performance counter set enables
a performance monitoring tool to indicate the set of counters to be collected for a particular listener callback.
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3.4.2.5 Performance Counter Sample

A performance counter sample corresponds to one sample of collected measurement values of a performance
counter set. Only the values corresponding to enabled counters in the sample's counter set should be observed by
the listener callback. Whether the sample contains valid values for counters disabled in the set is unspecified.

3.4.2.6 Performance Counter Listener

A performance counter listener is a callback function registered by some external tool to monitor a set of perfor-
mance counters in a particular scope. It is called each time a new performance counter sample is ready to be
observed. The sample object should not be accessed outside the callback.

3.4.2.7 Application Programming Interface

The API of the performance monitoring framework is defined in the starpu_perf_monitoring.h public header file
of StarPU. This header file is automatically included with starpu.h. An example of use of the routines is given in
Sequence of operations.

3.4.3 Implementation Details
3.4.3.1 Performance Counter Registration

Each module of StarPU can export performance counters. In order to do so, modules that need to export some
counters define a registration function that is called at StarPU initialization time. This function is responsible for
calling the "_starpu_perf_counter_register()" function once for each counter it exports, to let the framework know
about the list of counters managed by the module. It also registers performance sample updater callbacks for the
module, one for each scope for which it exports counters.

3.4.3.2 Performance Sample Updaters

The updater callback for a module and scope combination is internally called every time a sample for a set of
performance counter must be updated. Thus, the updated callback is responsible for filling the sample's selected
counters with the counter values found at the time of the call. Global updaters are currently called at task submission
time, as well as any blocking tasks management function of the StarPU API, such as starpu_task_wait_for_all(),
which waits for the completion of all tasks submitted up to this point. Per-worker updaters are currently called at
the level of StarPU's drivers, that is, the modules in charge of task execution of hardware-specific worker threads.
The actual calls occur in-between the execution of tasks. Per-codelet updaters are currently called both at task
submission time, and at the level of StarPU's drivers together with the per-worker updaters.

A performance sample object is locked during the sample collection. The locking prevents the following issues:

» The listener of sample being changed during sample collection;
» The set of counters enabled for a sample being changed;
« Conflicting concurrent updates;

» Updates while the sample is being read by the listener.

The location of the updaters' calls is chosen to minimize the sequentialization effect of the locking, in order to limit the
level of interference of the monitoring process. For Global updaters, the calls are performed only on the application
thread(s) in charge of submitting tasks. Since, in most cases, only a single application thread submits tasks, the
sequentialization effect is moderate. Per-worker updates are local to their worker, thus here again the sample lock
is un-contented, unless the external monitoring tool frequently changes the set of enabled counters in the sample.

3.4.3.3 Counter operations

In practice, the sample updaters only take snapshots of the actual performance counters. The performance coun-
ters themselves are updated with ad-hoc procedures depending on each counter. Such procedures typically involve
atomic operations. While operations such as atomic increments or decrements on integer values are readily avail-
able, this is not the case for more complex operations such as min/max for computing peak value counters (for
instance in the global and per-codelet counters for peak number of submitted tasks and peak number of ready
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tasks waiting for execution), and this is also not the case for computations on floating point data (used for instance
in computing cumulated execution time of tasks, either per worker or per codelet). The performance monitoring
framework therefore supplies such missing routines, for the internal use of StarPU.

3.4.3.4 Runtime checks

The performance monitoring framework features a comprehensive set of runtime checks to verify that both Star«
PU and some external tool do not access a performance counter with the wrong typed routines, to quickly detect
situations of mismatch that can result from the evolution of multiple pieces of software at distinct paces. Moreover,
no StarPU data structure is accessed directly, either by the external code making use of the performance monitoring
framework. The use of the C enum constants is optional; referring to values through constant strings is available
when more robustness is desired. These runtime checks enable the framework to be extensible. Moreover, while
the framework's counters currently are permanently compiled in, they could be made optional at compile time,
for instance to suppress any overhead once the analysis and optimization process has been completed by the
programmer. Thanks to the runtime discovery of available counters, the applicative code, or an intermediate layer
such as skeleton layer acting on its behalf, would then be able to adapt to performance analysis builds versus
optimized builds.

3.4.4 Exported Counters
3.4.4.1 Global Scope

Counter Name Counter Definition
starpu.task.g_total_submitted | Total number of tasks submitted

starpu.task.g_peak_submitted Maximum number of tasks submitted, waiting for dependencies
resolution at any time

starpu.task.g_peak_ready Maximum number of tasks ready for execution, waiting for an ex-
ecution slot at any time

3.4.4.2 Per-worker Scope

Counter Name Counter Definition
starpu.task.w_total_executed Total number of tasks executed on a given worker
starpu.task.w_cumul_execution_time | Cumulated execution time of tasks executed on a given

worker
3.4.4.3 Per-Codelet Scope

Counter Name Counter Definition
starpu.task.c_total_submitted Total number of submitted tasks for a given codelet
starpu.task.c_peak_submitted Maximum number of submitted tasks for a given

codelet waiting for dependencies resolution at any time

starpu.task.c_peak_ready Maximum number of ready tasks for a given codelet
waiting for an execution slot at any time

starpu.task.c_total_executed Total number of executed tasks for a given codelet

starpu.task.c_cumul_execution_time | Cumulated execution time of tasks for a given codelet

3.4.5 Sequence of operations

This section presents a typical sequence of operations to interface an external tool with some StarPU per-
formance counters. In this example, the counters monitored are the per-worker total number of executed
tasks (starpu.task.w_total_executed) and the tasks' cumulated execution time (starpu.task.+«
w_cumul_execution_time).

Step 0: Initialize StarPU
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StarPU must first be initialized, by a call to starpu_init(), for performance counters to become available, since each

module of StarPU registers the performance counters it exports during that initialization phase.
int ret = starpu_init (NULL);

Step 1: Allocate a counter set
A counter set has to be allocated on the per-worker scope. The per-worker scope id can be obtained by name, or
with the pre-defined enum value starpu_perf_counter_scope_per_worker.

enum starpu_perf_counter_scope w_scope = starpu_perf_counter_scope_per_worker;
struct starpu_perf_counter_set xw_set = starpu_perf counter_set_alloc(w_scope);

Step 2: Get the counter IDs Each performance counter has a unique ID used to refer to it in subsequent calls to
the performance monitoring framework.

int id_w_total_executed = starpu_perf_counter_name_to_id(w_scope,
"starpu.task.w_total_executed");
int id_w_cumul_execution_time = starpu_perf_ counter_name_to_id(w_scope,

"starpu.task.w_cumul_execution_time");
Step 3: Enable the counters in the counter set
This step indicates which counters will be collected into performance monitoring samples for the listeners referring
to this counter set.

starpu_perf_counter_set_enable_id(w_set, id_w_total_executed);
starpu_perf_counter_set_enable_id(w_set, id_w_cumul_execution_time);

Step 4: Write a listener callback
This callback will be triggered when a sample becomes available. Upon execution, it reads the values for the two
counters from the sample and displays these values, for the sake of the example.

void w_listener_cb(struct starpu_perf counter_listener xlistener,
struct starpu_perf_counter_sample *sample,
void *context)
{
int32_t w_total_executed =
starpu_perf_counter_sample_get_int32_value (sample, id_w_total_executed);
double w_cumul_execution_time =
starpu_perf_counter_sample_get_double_value (sample, id_w_cumul_execution_time);
printf ("worker[%d]: w_total_executed = %d, w_cumul_execution_time = %lf\n",
starpu_worker_get_id(),
w_total_executed,
w_cumul_execution_time);

}

Step 5: Initialize the listener

This step allocates the listener structure and prepares it to listen to the selected set of per-worker counters. However,
it is not actually active until Step 6, once it is attached to one or more worker.

struct starpu_perf_counter_listener x w_listener =
starpu_perf_counter_listener_init (w_set, w_listener_cb, NULL);

Step 6: Set the listener on all workers This step actually makes the listener active, in this case on every StarPU
worker thread.

starpu_perf_counter_set_all_ per_ worker_listeners(w_listener);
After this step, any task assigned to a worker will be counted in that worker selected performance counters, and
reported to the listener.

3.5 Performance Steering Knobs

This section presents the StarPU performance steering framework. It summarizes the objectives of the framework.
It introduces the entities involved in the framework, and then details the API, implementation and sequence of
operations.

3.5.1 Objectives

The objectives of this framework are to let external tools interface with StarPU, observe, and act at runtime on
actionable performance steering knobs exported by StarPU, in a generic, safe, extensible way. It defines an API to
let such external tools discover the available performance steering knobs in a particular StarPU revision of build, as
well as the type of each knob.

3.5.2 Entities

3.5.2.1 Performance Steering Knob

The performance steering knob entity designates one runtime-actionable knob exported by StarPU. It may represent
some setting, or some constant used within StarPU for a given purpose. The value of the knob is typed, it can be
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obtained or modified with the appropriate getter/setter routine. The knob belongs to a scope. A performance
steering knob is designated with a unique name and unique ID number.
3.5.2.2 Knob Type

A performance steering knob has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition

"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single precision floating point
"double” 64-bit double precision floating point

On/Off knobs are defined as "int32" type, with value 0 for Off and value !0 for On, unless otherwise specified.

3.5.2.3 Knob Scope

A performance steering knob belongs to a scope. The scope of a knob defines the context considered for computing
the corresponding knob. A scope is designated with a unique name and unique ID number. Currently, defined
scopes include:

Scope Name Scope Definition
"global" Knob is global to the StarPU instance
"per_worker" Knob is within the scope of a thread worker
"per_scheduler" | Knob is within the scope of a scheduling policy instance

3.5.2.4 Knob Group

The notion of Performance Steering Knob Group is currently internal to StarPU. It defines a series of knobs that are
handled by the same couple of setter/getter functions internally. A knob group belongs to a knob scope.

3.5.3 Application Programming Interface

The API is defined in the starpu_perf_steering.h public header file of StarPU. This header file is automatically
included with starpu.h.

3.5.4 Implementation Details

While the APIs of the monitoring and the steering frameworks share a similar design philosophy, the internals are
significantly different. Since the effect of the steering knobs varies widely, there is no global locking scheme in place
shared for all knobs. Instead, each knob gets its own procedures to get the value of a setting, or change it. To
prevent code duplication, some related knobs may share getter/setter routines as knob groups.

The steering framework does not involve callback routines. Knob get operations proceed immediately, except for
the possible delay in getting access to the knob value. Knob set operations also proceed immediately, not counting
the exclusive access time, though their action result may be observed with some latency, depending on the knob
and on the current workload. For instance, acting on a per-worker starpu.worker.w_enable_worker«
_knob to disable a worker thread may be observed only after the corresponding worker's assigned task queue
becomes empty, since its actual effect is to prevent additional tasks to be queued to the worker, and not to migrate
already queued tasks to another worker. Such design choices aim at providing a compromise between offering
some steering capabilities and keeping the cost of supporting such steering capabilities to an acceptable level.
The framework is designed to be easily extensible. At StarPU initialization time, the framework calls initialization
functions if StarPU modules to initialize the set of knobs they export. Knob get/set accessors can be shared among
multiple knobs in a knob group. Thus, exporting a new knob is basically a matter of declaring it at initialization
time, by specifying its name and value type, and either add its handling to an existing getter/setter pair of accessors
in a knob group, or create a new group. As the performance monitoring framework, the performance steering
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framework is currently permanently enabled, but could be made optional at compile-time to separate testing builds
from production builds.

3.5.5 Exported Steering Knobs
3.5.5.1 Global Scope

Knob Name Knob Definition
starpu.global.g_calibrate_knob Enable/disable the calibration of performance models
starpu.global.g_enable_catch_« Enable/disable the catching of UNIX signals
signal_knob

3.5.5.2 Per-worker Scope

Knob Name Knob Definition
starpu.worker.w_bind_to_pu_knob Change the processing unit to which a worker thread
is bound
starpu.worker.w_enable_worker_knob | Disable/re-enable a worker thread to be selected for
task execution

3.5.5.3 Per-Scheduler Scope

Knob Name Knob Definition
starpu.task.s_max_priority_cap_knob | Setacapping maximum priority value for subsequently
submitted tasks
starpu.task.s_min_priority_cap_knob | Seta capping minimum priority value for subsequently
submitted tasks

starpu.dmda.s_alpha_knob Scaling factor for the Alpha constant for Deque Model
schedulers to alter the weight of the estimated task ex-
ecution time

starpu.dmda.s_beta_knob Scaling factor for the Beta constant for Deque Model

schedulers to alter the weight of the estimated data
transfer time for the task's input(s)

starpu.dmda.s_gamma_knob Scaling factor for the Gamma constant for Deque
Model schedulers to alter the weight of the estimated
power consumption of the task

starpu.dmda.s_idle_power_knob Scaling factor for the baseline Idle power consumption
estimation of the corresponding processing unit

3.5.6 Sequence of operations

This section presents an example of a sequence of operations representing a typical use of the performance steering
knobs exported by StarPU. In this example, a worker thread is temporarily barred from executing tasks. For that,
the corresponding starpu.worker.w_enable_worker_knob of the worker, initially set to 1 (= enabled) is
changed to 0 (= disabled).
Step 0: Initialize StarPU
StarPU must first be initialized, by a call to starpu_init(). Performance steering knobs only become available after

this step, since each module of StarPU registers the knobs it exports during that initialization phase.
int ret = starpu_init (NULL);

Step 1: Get the knob ID
Each performance steering knob has a unique ID used to refer to it in subsequent calls to the performance steering
framework. The knob belongs to the "per_worker" scope.

int w_scope = starpu_perf_knob_scope_name_to_id("per_worker");
int w_enable_id = starpu_perf_knob_name_to_id(w_scope, "starpu.worker.w_enable_worker_knob");

Step 2: Get the knob current value
This knob is an On/Off knob. Its value type is therefore a 32-bit integer, with value 0 for Off and value !0 for On. The
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getter functions for per-worker knobs expect the knob ID as first argument, and the worker ID as second argument.
Here the getter call obtains the value of worker 5.

int32_t val = starpu_perf_knob_get_per_worker_int32_value (w_enable_id, 5);

Step 3: Set the knob current value

The setter functions for per-worker knobs expect the knob ID as first argument, the worker ID as second argument,
and the new value as third argument. Here, the value for worker 5 is set to 0 to temporarily bar the worker thread
from accepting new tasks for execution.

starpu_perf_knob_set_per_worker_int32_value (w_enable_id, 5, 0);

Subsequently, setting the value of the knob back to 1 enables the corresponding to accept new tasks for execution
again.

starpu_perf_knob_set_per_worker_int32_value (w_enable_id, 5, 1);
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Chapter 4

Offline Performance Tools

To get an idea of what is happening, a lot of performance feedback is available, detailed in this chapter. The various
information should be checked for.

» What does the Gantt diagram look like? (see Creating a Gantt Diagram)

— If it's mostly green (tasks running in the initial context) or context specific color prevailing, then the
machine is properly utilized, and perhaps the codelets are just slow. Check their performance, see
Performance Of Codelets.

— If it's mostly purple (Fetchinglnput), tasks keep waiting for data transfers, do you perhaps have far more
communication than computation? Did you properly use CUDA streams to make sure communication
can be overlapped? Did you use data-locality aware schedulers to avoid transfers as much as possible?

— If it's mostly red (Blocked), tasks keep waiting for dependencies, do you have enough parallelism? It
might be a good idea to check what the DAG looks like (see Creating a DAG With Graphviz).

— If only some workers are completely red (Blocked), for some reason the scheduler didn't assign tasks
to them. Perhaps the performance model is bogus, check it (see Performance Of Codelets). Do all your
codelets have a performance model? When some of them don't, the schedulers switches to a greedy
algorithm which thus performs badly.

You can also use the Temanejo task debugger (see UsingTheTemanejoTaskDebugger) to visualize the task graph
more easily.

4.1 Generating Traces With FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to generate
traces with a limited runtime overhead.

You can get a tarball from http://download.savannah.gnu.org/releases/fkt/?C=M

Compiling and installing the FxT library in the SFXTDIR path is done following the standard procedure:

$ ./configure --prefix=$FXTDIR

$ make
$ make install

In order to have StarPU to generate traces, StarPU needs to be configured again after installing FxT, and configu-
ration show:

FxT trace enabled: yes

If configure does not find FxT automatically, it can be specified by hand with the option --with-fxt :

$ ./configure —--with-fxt=$FXTDIR

Or you can simply point the PKG_CONF IG_PATH environment variable to SFXTDIR/1ib/pkgconfig

When STARPU_FXT_TRACE is set to 1, a trace is generated when StarPU is terminated by calling
starpu_shutdown(). The trace is a binary file whose name has the form prof_file_XXX_YYY where XXX
is the username, and YYY is the MPI id of the process that used StarPU (or 0 when running a sequential program).
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One can change the name of the file by setting the environment variable STARPU_FXT_SUFFIX, its contents will
be used instead of prof_file_ XXX. This file is saved in the /tmp/ directory by default, or by the directory
specified by the environment variable STARPU_FXT_PREFIX.

The additional configure option --enable-fxt-lock can be used to generate trace events which describes the
lock's behavior during the execution. It is however very heavy and should not be used unless debugging StarPU's
internal locking.

When the FxT trace file prof_file_something has been generated, it is possible to generate different trace
formats by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something

Or alternatively, setting the environment variable STARPU_GENERATE_TRACE to 1 before application execution
will make StarPU automatically generate all traces at application shutdown. Note that if the environment variable
STARPU_FXT_PREFIX is set, files will be generated in the given directory.

One can also set the environment variable STARPU_GENERATE_TRACE_OPTIONS to specify options, see
starpu_fxt_tool -help, for example:

$ export STARPU_GENERATE_TRACE=1
$ export STARPU_GENERATE_TRACE_OPTIONS="-no-acquire"

When running an MPI application, STARPU_GENERATE_TRACE will not work as expected (each node will try to
generate trace files, thus mixing outputs...), you have to collect the trace files from the MPI nodes, and specify them
all on the command starpu_fxt_tool, forinstance:

$ starpu_fxt_tool -i /tmp/prof_file_somethingx
By default, the generated trace contains all information. To reduce the trace size, various —no—-foo options can be

passed to starpu_fxt_tool, see starpu_fxt_tool -help.

4.1.1 Creating a Gantt Diagram

One of the generated files is a trace in the Paje format. The file, located in the current directory, is named pa je . «
trace. It can be viewed with VIiTE ( https://solverstack.gitlabpages.inria.fr/vite/) a
trace visualizing open-source tool. To open the file paje .t race with ViTE, use the following command:

$ vite paje.trace
Once the file is opened in VITE interface, we will see the figure as shown below:

VITE :: paje.trace o
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We can then click the "No arrows" button in task bar of ViTE interface, to better observe the Gantt diagram that
illustrates the start and end dates of the different tasks or activities of a program.

VITE :: paje.trace

e o Erteces o

CORE R R MW o D

In the Gantt diagram, the bar types such as devices (CPU or GPU) are displayed on the left side. Each task is
represented by a horizontal rectangle that spans the duration of the task. The rectangles are arranged along a
timeline axis, which is shown at the top of the Gantt diagram and represents the overall duration of the program in
milliseconds. The position of the bar along the timeline shows when the task begins and ends. We can see some
long red bars at the beginning and end of the entire timeline, which represent that the unit is idle. There are no
tasks at these moments, and workers are waiting or in a sleeping state.

4.1.1.1 Zooming in Gantt Diagram

Then as shown in the following figure, press and hold the left mouse button to select the ar