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ABSTRACT

This report describes a computer program for drawing crystal structure illustrations.
Ball-and-stick type illustrations of a quality suitable for publication are produced with either
spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also
produce stereoscopic pairs of illustrations which aid in the visualization of complex packing
arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and
principal axes of thermal motion are also calculated to aid the structural study.
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1.  INTRODUCTION

1.1  WHAT IS ORTEP?

Appropriate illustrations are essential in any manuscript dealing with crystallographic
structures. An often quoted expression might justifiably be paraphrased to read that a well-
planned figure is worth a thousand numbers. With the information explosion in the scientific liter-
ature, the author of a structure paper is obligated to provide the reader with “crystal clear” illustra-
tions.

The Oak Ridge Thermal Ellipsoid Plot (ORTEP) program is a tool for drawing certain
types of crystal structure illustrations. The program and the precision obtainable through machine
plotting make feasible the production of detailed stereoscopic illustrations that are impractical to
draw by conventional drafting methods. Several types of illustrations may be drawn with ORTEP.
For a standard thermal motion drawing, an ellipsoid positioned on an atomic site represents a 3-D
Gaussian probability density function showing the averaged atomic displacement as derived
through the anisotropic temperature factor parameters for that atom. In critical net drawings, a
very elongated or flattened ellipsoid of revolution, not positioned on an atomic center, represents
the orientation of a saddle-point type critical point of the global density function. For simpler
drawings of a crystal structure, all atoms are represented as spheres with sphere radii, or some
other graphical variable, used to depict the chemical type of the atom. ORTEP cannot make van
der Waal’s type drawings, which require overlapping spheres or ellipsoids.

Since its inception, four major goals have driven the development of ORTEP. These are
listed here in decreasing order of their assigned importance. (1) The program must produce high
quality illustrations, including stereoscopic pairs of thermal-motion figures, as free as possible of
visually distracting approximations. (2) The program must be general both with respect to the
types of illustrations it can draw and the types of computing and plotting equipment that it can
utilize. (3) The program must be easy to use, require a minimum of input, and be easy to modify.
(4) The computation time should be minimized. Since generality is placed higher in this goal list
than ease of use, the program originally designed in the 1960s lacks several of the user-friendly
attributes of the 1990s. However, the program seems to have survived the test of time better than
some of its more user-friendly competitors. There were over 1000 citations of the 19651 and
19762 versions of the program in the 1995 Science Citation Index.3 Since ORTEP has become
widely used, we decided not to make changes that would render existing ORTEP input data sets
inoperative.

ORTEP-III is written in device-independent FORTRAN, and the code should compile
and run on any computer system that has a FORTRAN compiler. Compiled versions of ORTEP-
III are available for DOS compatible and Macintosh† compatible personal computers. ORTEP-III
is available on the World Wide Web at 

http://www.ornl.gov/ortep/ortep.html
 
or via anonymous ftp at ftp://ftp.ornl.gov/pub/ortep. Questions, comments, problems, sugges-
tions, etc. may be sent via electronic mail to ortep@ornl.gov or via regular mail to either author
of this report at P.O. Box 2008, Oak Ridge, TN 37831-6197, USA.

†Macintosh is a registered trademark of Apple Computer, Inc.
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1.2  WHAT’S NEW IN ORTEP-III 

For compatibility with existing ORTEP data sets, ORTEP-III retains ALL the functional-
ity of OR TEP,1 released in 1965, and OR TEP-II,2 released in 1976. A brief description of the
new capabilities in ORTEP-III is provided here. See the indicated sections of this report for more
detailed information.

1.2.1  User Interface  

ORTEP-III is a semi-interactive program that requests certain information from the user
while the program executes. A default value for each item requested is provided in square brack-
ets, and it will be used if the user simply hits the RETURN key (on some keyboards, the name of
this key is ENTER). On systems that distinguish upper and lower case, care must be taken when
entering file names to provide the correct case of the letters. (See 4.1.)

1.2.2  Screen Display 

The screen drawing subroutines available in ORTEP-III use PGPLOT. PGPLOT is a free
graphics library developed by T. J. Pearson at the California Institute of Technology. The pack-
age is written in FORTRAN and operates on a variety of platforms. Information about PGPLOT
can be found on the World Wide Web at http://astro.caltech.edu/~tjp/pgplot or via e-mail to
tjp@astro.caltech.edu. PGPLOT is not required to run ORTEP-III. The compiled versions of
ORTEP-III for personal computers include the screen drawing capability. (See 4.2.)

1.2.3  Output Formats 

Illustrations generated by ORTEP-III can be saved as Encapsulated Postscript™ or
Hewlett-Packard Graphics Language (HPGL/2)™ files.† The files may be printed directly on a
wide variety of printers and plotters or may be imported into a number of computer programs that
accept these formats. (See 4.3.)

1.2.4  Color 

By default, ORTEP-III plots its illustrations in black on a white background. The new
204 instruction allows color to be added to the illustrations if the output device supports color.
Once a color is set, it remains in effect until another 204 instruction changes the color. A 204 with
no parameter (or a “0”) returns the plotting color to black (or pen #1). The screen and Postscript
drivers built into ORTEP-III define color value 2 as red, 3 as green, 4 as blue, 5 as cyan, 6 as
magenta, and 7 as yellow. (See 3.3.3.)

1.2.5  Interactive Editor 

ORTEP-III provides a simple line editor for editing the input file without exiting the pro-
gram. When the editor is invoked, the instruction set from the input file is displayed on the screen
with line numbers (#) along with the editor commands shown below. (See 4.4.)

  

†Encapsulated Postscript is a registered trademark of Adobe Systems, Inc. Hewlett-
Packard Graphics Language Version 2 (HPGL/2) is a registered trademark of Hewlett-Packard
Corporation.
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   C=Change line #                   D=Delete line(s) # [#]
   I=Insert line before #            T=Type line(s) [#] [#]
   S=Save modified instruction set   O=Restore original instruction set
   P=Save drawing as Postscript      H=Save drawing as HPGL
   R=Redraw structure on screen      Q=Quit

1.2.6  Comments 

In previous versions of ORTEP, Format No. 3 trailer cards (see 3.3.1) were the only
means of placing comments in the input file. This method still works in ORTEP-III, but a new
method also exists. Among the ORTEP instructions, any line beginning with # is treated as a
comment and is totally ignored by the program. Such comments can only go in the instruction
portion of the input data and only at places where a new instruction could begin, i.e., comments
cannot go between instructions and their trailer (continuation) cards. CAUTION: These comment
lines are not printed in the ORTEP output file, and they are lost if the input file is edited with
ORTEP-III’s line editor. 

1.2.7  Alternate Formats for Atomic Parameters 

ORTEP-III provides a way to input atom parameters that are available in a “nonstandard”
format. If the sentinel value (column 1) on the last symmetry card (see 3.2.3) in the ORTEP input
file is “2” instead of “1”, the program asks the user for the name of a file containing the atom
parameters and branches to subroutine READIN to read the information. This subroutine may be
recoded to read any desired format. (See 4.5.)

1.2.8  Atom “Features” 

In earlier versions of ORTEP, atoms could be referenced only by their numeric positions
in the input file; and atom number runs (ANR) (see 3.1.4) were used to select groups of atoms to
be treated in the same manner. ORTEP-III allows two optional attributes called “features” to be
included with each atom, and feature number runs (FNR) can be used to select groups of atoms
having particular features. To handle features, a new parameter, number run type, has been added
to the 100 series, 400 series, 505, 506, 700 series, 800 series, and 1001 instructions. Features
should prove especially useful for polymeric materials such as proteins or nucleic acids and for
critical net illustrations. (See 4.6.) 

1.2.9  Critical Net Illustrations 

ORTEP-III can produce critical net illustrations that depict some canonical topological
characteristics of the global ensemble of overlapping atomic-thermal-motion Gaussian density
functions in a crystal. (See 7.5.) 

1.2.10  Symmetry Operator Format

The symmetry operators in the ORTEP input file (see 3.2.3) may now be provided in a
free format using the xyz coordinate triplet notation found in the International Tables for Crystal-
lography.4 ORTEP is informed that this style for the symmetry operators is being used by having
a “1” in column 1 of the cell parameter card (see 3.2.2). (A “0” or blank in that position indicates
the old style is being used.) 
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Symmetry cards using this style do not have a specific format with the following two
exceptions: (1) the symmetry information on each card must not go beyond column 72, and (2)
column 1 must be blank on all symmetry cards other than the last one in the set, which must have
a non-zero value in column 1. Below is an example set of symmetry cards to illustrate the flexibil-
ity of this style. 

             X,Y,Z
             X   -Y   Z+1/2
             X+0.5,  .5+Y,  Z
             x+1/2,-y+1/2,1/2+z

Letters may be either upper or lower case. Commas or spaces may be used to separate the
components of the triplet. The three components may not have spaces within them. Decimal
fractions may be used with or without an initial 0. Fractions may precede or follow the letters. 

1.2.11  Miscellaneous  Changes in ORTEP-III

• No longer provides a choice of centered symbols. 
• Adds a parameter LOGC to the 100 and 400 series instructions to control the logic used

(union or intersection) when multiple screening conditions are applied to the atoms. (See 3.1.5.)
• Makes the parameters on the Format No. 2 trailer cards of the 100 and 400 series instructions

optional. (See 3.1.5.)
• Increases number of symmetry cards from 48 to 96. (See 3.2.3.)
• Increases number of atoms from 166 to 500. (See 3.2.4.)
• Makes entry of VDC2 on Type 6 and Type 7 temperature factor cards optional. (See 3.2.4.2.)
• Increases number of Format No. 2 trailer cards per instruction from 10 to 20. (See 3.3.1.)
• Adds a 205 instruction to change the plotting pen width. (See 3.3.3.)
• Makes “no retrace” (instruction 303) the default. (See 3.3.4.3.)
• Adds a 304 instruction to control the resolution (smoothing) of the ellipsoids. (See 3.3.4.4.)
• Allows atom screening on the 403/413 and 404/414 instructions. (See 3.3.5.3.)
• Changes 600 instructions to allow input of SCAL2 or ellipsoid probability. (See 3.3.7.)
• Adds a 706/716 instruction to add another standard ellipsoid type (open octant football) for

drawing atoms. (See 3.3.8.)
• Adds lower case letters for labeling. (See 3.3.10.)
• Centers titles automatically if they begin in column 1 of Format No. 3 trailer cards following

instructions 902, 903, and 913. (See 3.3.10.)
• Makes instruction number 1001 an alias for the 511 instruction of OR TEP-II.2 (See 3.3.12.)

1.3  REPORT ORGANIZATION 

This report covers the following topics. First, Section 2.1 includes a summary table of the
ORTEP instructions and is the part of the report to which the experienced user will routinely
refer. The remainder of Section 2 provides an overview of how to program an ORTEP
illustration, ending with a detailed example. Section 3 defines the terms used in this report and
describes the ORTEP input in detail. Section 4 discusses the use of ORTEP-III in general terms
while Section 5 looks at some of the more technical aspects. The mathematics of thermal-motion
probability ellipsoids are described in Section 6. Lastly, several example structures illustrating a
number of ORTEP’s capabilities are provided in Section 7. The appendices provide brief
descriptions of the subprograms and the more important variables that are used in ORTEP along
with a listing of the entire program’s FORTRAN code.
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2.  PROGRAMMING ORTEP

2.1  GENERAL PRINCIPLES

Originally, the input to ORTEP was a set of punched cards. Now, the ORTEP input is a
computer text file containing lines of information corresponding to the cards.  However, since the
input must generally be very precisely formatted as required by the FORTRAN code, it is still
convenient to refer to the individual lines of input as “cards,” and that practice is maintained in
this report. 

For those who may be unfamiliar with FORTRAN input, two points are in order. First,
when a card field is specified to contain a particular numeric input item, the value should be
entered in the rightmost positions of the field. Secondly, the value of “0” is assigned to a numeric
input item whose card field is left blank.

ORTEP input consists of five types of information.

• Title card (see 3.2.1)

• Cell parameter card (see 3.2.2)

• Symmetry cards (see 3.2.3)

• Atomic parameter cards (see 3.2.4)

• Instruction cards (see Table 2.1 and  3.3)

ORTEP applies the concept of programming to the task of drawing illustrations. Using
this approach, a set of basic building block operations have been developed that are put together
by the user to “program” an illustration. These operations, which are termed instructions, control
six types of activities. 

• setting up the graphics
• composing an illustration
• drawing the illustration
• repeating a sequence of other instructions
• calculating and printing tables of ancillary information
• terminating the process 

Table 2.1 is a summary of the ORTEP instructions. Each instruction starts on a separate
card and consists of an identifying number and the parameters needed for the particular instruc-
tion. The general role of these instructions is explained in the remaining parts of this section, and
the individual instructions are described in detail in Section 3.3. The simplest way to construct the
program is, first, to select a “template” instruction set used for some previous related ORTEP
drawing and then to scan through the list of instructions in Table 2.1 and pick out the relevant
parameters and new instructions to modify the template.

In order to produce high quality illustrations with ORTEP, an iterative approach is gener-
ally required; that is, the illustration must usually be computed and plotted several times before an
optimal figure is produced. With each trial, as many factors as possible are optimized to give a
more informative and more aesthetically pleasing result.



   

6

T
ab

le
 2

.1
a.

  S
um

m
ar

y 
ta

bl
e 

of
 F

or
m

at
 N

o.
 0

 O
R

T
E

P
-I

II
 in

st
ru

ct
io

ns
 a

nd
 F

or
m

at
 N

o.
 1

 in
st

ru
ct

io
n 

co
nt

in
ua

ti
on

 c
ar

ds
.

F
un

ct
io

n
1-

3
4-

9
10

-1
8

19
-2

7
28

-3
6

37
-4

5
46

-5
4

55
-6

3
64

-7
2

S
tr

uc
tu

re
 A

na
ly

si
s

D
is

ta
nc

es
0,

 1
, 

or
 2

1
0

1
O

rg
. A

D
R

 (
f)

O
rg

. A
D

R
 (

t)
T

ar
. A

N
R

 (
f)

T
ar

. A
N

R
 (

t)
D

m
ax

 (Å
)

—
—

(F
or

m
at

 N
o.

 1
 t

ra
il

er
 c

ar
d)

2
—

—
[L

O
G

C
]

—
—

—
—

—
D

is
ta

nc
es

 +
 a

ng
le

s
0,

 1
, 

or
 2

1
0

2
(s

am
e 

as
 1

01
)

P
ri

nc
ip

al
 a

xe
s

—
1

0
3

—
—

—
—

—
—

—
D

is
ta

nc
es

 s
in

gl
e 

co
nv

ol
ut

e
0,

 1
, 

or
 2

1
0

5
O

rg
. N

R
 (

f)
O

rg
. N

R
 (

t)
T

ar
. N

R
 (

f)
T

ar
. N

R
 (

t)
D

m
ax

 (Å
)

N
R

 T
yp

e
—

(F
or

m
at

 N
o.

 1
 t

ra
il

er
 c

ar
d)

2
—

—
[L

O
G

C
]

—
—

—
—

—
D

is
t. 

re
it

er
at

e 
co

nv
ol

ut
e

0,
 1

, 
or

 2
1

0
6

(s
am

e 
as

 1
05

)
P

lo
tt

er
 C

on
tr

ol
In

it
ia

li
ze

—
2

0
1

—
—

—
—

—
—

—
S

hi
ft

 p
lo

t 
or

ig
in

/t
er

m
in

at
e

—
2

0
2

[X
 (

in
.)

]
[Y

 (
in

.)
]

—
—

—
—

—
C

ol
or

—
2

0
4

IC
O

L
O

R
—

—
—

—
—

—
Pe

n 
w

id
th

—
2

0
5

W
ID

TH
—

—
—

—
—

—
D

ra
w

in
g 

P
ar

am
et

er
s

D
im

en
si

on
s 

an
d 

vi
ew

—
3

0
1

X
 (

in
.)

Y
 (

in
.)

V
IE

W
 (

in
.)

B
R

D
R

 (
in

.)
—

—
—

T
it

le
 r

ot
at

io
n

—
3

0
2

T
H

E
T

A
 (˚

)
—

—
—

—
—

—
R

et
ra

ce
 d

is
pl

ac
e

—
3

0
3

D
IS

P
 (

in
.)

—
—

—
—

—
—

E
ll

ip
se

 s
m

oo
th

ne
ss

—
3

0
4

C
H

O
R

D
—

—
—

—
—

—
A

T
O

M
S 

A
rr

ay
R

un
 a

dd
0 

or
 1

4
0

1
FR

O
M

 (
1)

(-
) 

T
O

 (
1)

[F
R

O
M

 (
2)

(-
) 

T
O

 (
2)

]
[F

R
O

M
 (

3)
(-

) 
T

O
 (

3)
]

…
R

un
 s

ub
tr

ac
t

0 
or

 1
4

1
1

(s
am

e 
as

 4
01

)
Sp

he
re

 a
dd

0,
 1

, 
or

 2
4

0
2

O
rg

. A
D

R
 (

f)
O

rg
. A

D
R

 (
t)

T
ar

. A
N

R
 (

f)
T

ar
. A

N
R

 (
t)

D
m

ax
 (Å

)
—

—
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
2

—
—

[L
O

G
C

]
—

—
—

—
—

S
ph

er
e 

su
bt

ra
ct

0,
 1

, 
or

 2
4

1
2

(s
am

e 
as

 4
02

)
B

ox
 a

dd
0,

 1
, 

or
 2

4
0

3
O

rg
. A

D
R

 (
f)

O
rg

. A
D

R
 (

t)
T

ar
. A

N
R

 (
f)

T
ar

. A
N

R
 (

t)
a/

2 
(Å

)
b/

2 
(Å

)
c/

2 
(Å

)
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
2

—
—

[L
O

G
C

]
—

—
—

—
—

B
ox

 s
ub

tr
ac

t
0,

 1
, 

or
 2

4
1

3
(s

am
e 

as
 4

03
)

T
ri

cl
in

ic
 b

ox
 a

dd
0,

 1
, 

or
 2

4
0

4
O

rg
. A

D
R

 (
f)

O
rg

. A
D

R
 (

t)
T

ar
. A

N
R

 (
f)

T
ar

. A
N

R
 (

t)
a/

2 
(f

ra
ct

.)
b/

2 
(f

ra
ct

.)
c/

2 
(f

ra
ct

.)
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
2

—
—

[L
O

G
C

]
—

—
—

—
—

T
ri

cl
in

ic
 b

ox
 s

ub
tr

ac
t

0,
 1

, 
or

 2
4

1
4

(s
am

e 
as

 4
04

)
C

on
vo

lu
te

 a
dd

0,
 1

, 
or

 2
4

0
5

O
rg

. N
R

 (
f)

O
rg

. N
R

 (
t)

T
ar

. N
R

 (
f)

T
ar

. N
R

 (
t)

D
m

ax
 (Å

)
N

R
 T

yp
e

—
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
2

—
—

[L
O

G
C

]
—

—
—

—
—

C
on

vo
lu

te
 s

ub
tr

ac
t

0,
 1

, 
or

 2
4

1
5

(s
am

e 
as

 4
05

)
R

ei
te

ra
te

 c
on

vo
lu

te
 a

dd
0,

 1
, 

or
 2

4
0

6
O

rg
. N

R
 (

f)
O

rg
. N

R
 (

t)
T

ar
. N

R
 (

f)
T

ar
. N

R
 (

t)
D

m
ax

 (Å
)

N
R

 T
yp

e
—

(F
or

m
at

 N
o.

 1
 t

ra
il

er
 c

ar
d)

2
—

[A
SY

M
U

N
IT

]
[L

O
G

C
]

—
—

—
—

—
R

ei
te

ra
te

 c
on

vo
lu

te
 s

ub
t.

0,
 1

, 
or

 2
4

1
6

(s
am

e 
as

 4
06

)
Z

er
o 

A
T

O
M

S 
ar

ra
y

—
4

1
0

—
—

—
—

—
—

—



T
ab

le
 2

.1
a.

  S
um

m
ar

y 
ta

bl
e 

of
 F

or
m

at
 N

o.
 0

 O
R

T
E

P
-I

II
 in

st
ru

ct
io

ns
 a

nd
 F

or
m

at
 N

o.
 1

 in
st

ru
ct

io
n 

co
nt

in
ua

ti
on

 c
ar

ds
.

F
un

ct
io

n
1-

3
4-

9
10

-1
8

19
-2

7
28

-3
6

37
-4

5
46

-5
4

55
-6

3
64

-7
2

C
ar

te
si

an
 S

ys
te

m
E

xp
li

ci
t 

de
fi

ni
ti

on
—

5
0

1
O

R
G

N
V

1 
(f

)
V

1 
(t

)
V

2 
(f

)
V

2 
(t

)
—

T
yp

e
R

ot
at

e 
re

fe
re

nc
e

0 
or

 1
5

0
2

A
xi

s 
N

o.
R

ot
at

io
n 

(˚
)

[A
xi

s 
N

o.
R

ot
at

io
n]

…
…

…
R

ot
at

e 
w

or
ki

ng
—

5
0

3
A

xi
s 

N
o.

R
ot

at
io

n 
(˚

)
—

—
—

—
—

T
ra

ns
la

te
 r

ef
er

en
ce

—
5

0
4

∆X
 (

in
.)

∆Y
 (

in
.)

∆Z
 (

in
.)

—
—

—
—

O
ri

gi
n 

at
 c

en
tr

oi
d

0 
or

 2
5

0
5

—
—

—
—

—
—

—
C

en
tr

oi
d 

or
g.

/i
ne

rt
ia

l 
ax

es
0 

or
 2

5
0

6
—

—
—

—
—

—
—

P
os

it
io

n 
an

d 
S

ca
le

E
xp

li
ci

t 
ce

nt
er

 a
nd

 s
ca

le
—

6
0

1
X

0 
(i

n.
)

Y
0 

(i
n.

)
SC

A
L

1
SC

A
L

2*
—

—
—

E
xp

li
ci

t 
ce

nt
er

 a
nd

 a
ut

o 
sc

al
e

—
6

0
2

X
0 

(i
n.

)
Y

0 
(i

n.
)

—
SC

A
L

2*
—

—
—

E
xp

li
ci

t 
sc

al
e 

an
d 

au
to

 c
en

te
r 

—
6

0
3

—
—

SC
A

L
1

SC
A

L
2*

—
—

—
A

ut
o 

ce
nt

er
 a

nd
 s

ca
le

—
6

0
4

—
—

—
SC

A
L

2*
—

—
—

In
cr

. 
po

si
ti

on
 a

nd
 i

nc
r.

 s
ca

le
—

6
1

1
∆X

0 
(i

n.
)

∆Y
0 

(i
n.

)
∆S

C
A

L
1

SC
A

L
2*

—
—

—
In

cr
. 

po
si

ti
on

 a
nd

 a
ut

o 
sc

al
e

—
6

1
2

∆X
0 

(i
n.

)
∆Y

0 
(i

n.
)

—
SC

A
L

2*
—

—
—

In
cr

. s
ca

le
 a

nd
 a

ut
o 

ce
nt

er
—

6
1

3
—

—
∆S

C
A

L
1

SC
A

L
2*

—
—

—
A

to
m

 P
lo

tt
in

g
 

 
 

S
ha

de
d 

oc
ta

nt
 f

oo
tb

al
l

0 
or

 1
7

0
1

—
—

—
—

S
ym

. 
hg

t.
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

(F
or

m
at

 N
o.

 1
 t

ra
il

er
 c

ar
d)

—
—

A
0 

(i
n.

)
A

1 
(i

n.
)

N
R

 (f
)

N
R

 (
t)

N
R

 T
yp

e
—

—
F

oo
tb

al
l

0 
or

 1
7

0
2

(s
am

e 
as

 7
01

)
O

pe
n 

m
od

el
0 

or
 1

7
0

3
(s

am
e 

as
 7

01
)

B
ou

nd
ar

y 
on

ly
0 

or
 1

7
0

4
(s

am
e 

as
 7

01
)

E
xp

li
ci

t 
el

li
ps

oi
d 

de
sc

ri
pt

io
n

0 
or

 1
7

0
5

N
PL

A
N

E
N

D
O

T
N

LI
N

E
N

D
A

SH
S

ym
. 

hg
t.

 (
in

.)
|| 

O
ff

se
t 

(i
n.

)
⊥

 O
ff

se
t 

(i
n.

)
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
—

—
A

0 
(i

n.
)

A
1 

(i
n.

)
N

R
 (f

)
N

R
 (

t)
N

R
 T

yp
e

—
—

O
pe

n 
oc

ta
nt

 f
oo

tb
al

l
0 

or
 1

7
0

6
(s

am
e 

as
 7

01
)

A
s 

ab
ov

e 
ex

ce
pt

0 
or

 1
7

1
1

(s
am

e 
as

 7
01

)
no

 p
ri

nt
ed

 o
ut

pu
t 

of
0 

or
 1

7
1

2
(s

am
e 

as
 7

01
)

in
di

vi
du

al
 c

oo
rd

in
at

es
0 

or
 1

7
1

3
(s

am
e 

as
 7

01
)

0 
or

 1
7

1
4

(s
am

e 
as

 7
01

)
0 

or
 1

7
1

5
(s

am
e 

as
 7

05
)

0 
or

 1
7

1
6

(s
am

e 
as

 7
01

)

*O
r 

pr
ob

ab
il

it
y 

(e
nt

er
ed

 a
s 

ne
ga

ti
ve

 w
ho

le
 n

um
be

r)
.

   

7



T
ab

le
 2

.1
a.

  S
um

m
ar

y 
ta

bl
e 

of
 F

or
m

at
 N

o.
 0

 O
R

T
E

P
-I

II
 in

st
ru

ct
io

ns
 a

nd
 F

or
m

at
 N

o.
 1

 in
st

ru
ct

io
n 

co
nt

in
ua

ti
on

 c
ar

ds
.

F
un

ct
io

n
1-

3
4-

9
10

-1
8

19
-2

7
28

-3
6

37
-4

5
46

-5
4

55
-6

3
64

-7
2

B
on

d 
P

lo
tt

in
g

 
 

 
E

xp
li

ci
t

[1
 &

] 
2

8
0

1
A

D
C

 (f
)

A
D

C
 (t

)
[A

D
C

 (f
)

A
D

C
 (

t)
]

[A
D

C
 (f

)
A

D
C

 (
t)

]
…

Im
pl

ic
it

 s
ti

ck
2

8
0

2
—

N
R

 T
yp

e
—

—
—

—
—

Im
pl

ic
it

 l
in

e
2

8
0

3
—

N
R

 T
yp

e
—

—
—

—
—

A
s 

ab
ov

e 
ex

ce
pt

[1
 &

] 
2

8
1

1
(s

am
e 

as
 8

01
)

no
 p

ri
nt

ed
 o

ut
pu

t
2

8
1

2
(s

am
e 

as
 8

02
)

2
8

1
3

(s
am

e 
as

 8
03

)
L

ab
el

 P
lo

tt
in

g
A

to
m

 l
ab

el
—

9
0

1
A

D
C

 1
[A

D
C

 2
]

X
 R

es
et

 (
in

.)
Y

 R
es

et
 (

in
.)

H
G

T
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

R
eg

ul
ar

 t
it

le
3

9
0

2
A

D
C

 1
[A

D
C

 2
]

X
 R

es
et

 (
in

.)
Y

 R
es

et
 (

in
.)

H
G

T
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

N
or

m
al

 p
la

ne
 v

ec
to

r 
ti

tl
e

3
9

0
3

A
D

C
 1

A
D

C
 2

X
 R

es
et

 (
in

.)
Y

 R
es

et
 (

in
.)

H
G

T
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

G
en

er
al

 p
la

ne
 v

ec
to

r 
ti

tl
e

3
9

1
3

A
D

C
 1

A
D

C
 2

—
—

H
G

T
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

N
rm

. 
pl

an
e 

bo
nd

-l
en

gt
h 

la
be

l
 

 
 

(1
 d

ec
im

al
 p

la
ce

)
—

9
0

4
A

D
C

 1
A

D
C

 2
X

 R
es

et
 (

in
.)

Y
 R

es
et

 (
in

.)
H

G
T

 (
in

.)
|| 

O
ff

se
t 

(i
n.

)
⊥

 O
ff

se
t 

(i
n.

)
(2

 d
ec

im
al

 p
la

ce
s)

—
9

0
5

(s
am

e 
as

 9
04

)
(3

 d
ec

im
al

 p
la

ce
s)

—
9

0
6

(s
am

e 
as

 9
04

)
G

en
. 

pl
an

e 
bo

nd
-l

en
gt

h 
la

be
l

 
 

 
(1

 d
ec

im
al

 p
la

ce
)

—
9

1
4

A
D

C
 1

A
D

C
 2

—
—

H
G

T
 (

in
.)

|| 
O

ff
se

t 
(i

n.
)

⊥
 O

ff
se

t 
(i

n.
)

(2
 d

ec
im

al
 p

la
ce

s)
—

9
1

5
(s

am
e 

as
 9

14
)

(3
 d

ec
im

al
 p

la
ce

s)
—

9
1

6
(s

am
e 

as
 9

14
)

O
ve

rl
ap

 C
or

re
ct

io
n

A
to

m
s 

[a
nd

 i
m

pl
ic

it
 b

on
ds

]
0 

[o
r 

2]
1

0
0

1
0,

 1
, 

or
N

R
 T

yp
e

—
—

—
—

—
(F

or
m

at
 N

o.
 1

 t
ra

il
er

 c
ar

d)
O

V
M

R
G

N
 (

in
.)

E
xp

li
ci

t 
bo

nd
s

[1
 &

] 
2

8
2

1
A

D
C

 (f
)

A
D

C
 (t

)
[A

D
C

 (f
)

A
D

C
 (

t)
]

[A
D

C
 (f

)
A

D
C

 (
t)

]
…

Im
pl

ic
it

 b
on

ds
2

8
2

2
—

N
R

 T
yp

e
—

—
—

—
—

Sa
ve

 S
eq

ue
nc

e
 

 
 

S
ta

rt
—

1
1

0
1

—
—

—
—

—
—

—
E

nd
—

1
1

0
2

—
—

—
—

—
—

—
E

xe
cu

te
—

1
1

0
3

—
—

—
—

—
—

—
T

er
m

in
at

e 
—

-1
—

—
—

—
—

—
—

N
ex

t S
tr

uc
tu

re
—

-2
—

—
—

—
—

—
—

   

8



   

9

T
ab

le
 2

.1
b.

  S
um

m
ar

y 
ta

bl
e 

of
 F

or
m

at
 N

o.
 2

 in
st

ru
ct

io
n 

co
nt

in
ua

ti
on

 c
ar

ds
.

 
P

os
it

iv
e 

N
um

be
r 

or
 B

la
nk

 i
n 

C
ol

. 4
3-

48
N

eg
at

iv
e 

N
um

be
r 

in
 C

ol
. 4

3-
48

C
ol

um
ns

10
1,

10
2,

10
5,

10
6,

40
2/

41
2,

40
5/

41
5,

40
6/

41
6

40
3/

41
3,

40
4/

41
4

50
5,

50
6

80
1/

81
1,

82
1

80
2/

81
2,

82
2,

10
01

80
3/

81
3

80
2/

81
2,

82
2,

10
01

80
3/

81
3

3
0 

or
 2

0 
or

 2
0 

or
 2

0 
or

 2
0 

or
 2

0 
or

 2
0 

or
 2

0 
or

 2

4-
9

—
—

—
—

—
—

—
—

10
-1

2
[O

rg
. N

R
 (

f)
[O

rg
. N

R
 (

f)
N

R
 (

f)
—

O
rg

. N
R

 (
f)

O
rg

. N
R

 (
f)

O
rg

. N
R

 (
f)

O
rg

. N
R

 (
f)

13
-1

5
O

rg
. N

R
 (

t)
]

O
rg

. N
R

 (
t)

]
N

R
 (

t)
—

O
rg

. N
R

 (
t)

O
rg

. N
R

 (
t)

O
rg

. N
R

 (
t)

O
rg

. N
R

 (
t)

16
-1

8
[T

ar
. N

R
 (

f)
[T

ar
. N

R
 (

f)
—

—
T

ar
. N

R
 (

f)
T

ar
. N

R
 (

f)
T

ar
. N

R
 (

f)
T

ar
. N

R
 (

f)

19
-2

1
T

ar
. N

R
 (

t)
]

T
ar

. N
R

 (
t)

]
—

—
T

ar
. N

R
 (

t)
T

ar
. N

R
 (

t)
T

ar
. N

R
 (

t)
T

ar
. N

R
 (

t)

22
-2

4
[N

R
 ty

pe
]

N
R

 ty
pe

N
R

 ty
pe

B
on

d 
ty

pe
B

on
d 

ty
pe

—
B

on
d 

ty
pe

—

25
-3

0
[D

m
in

 (Å
)

—
W

ei
gh

t
—

D
m

in
 (Å

)
D

m
in

 (Å
)

D
m

in
 (Å

)
D

m
in

 (Å
)

31
-3

6
D

m
ax

 (
Å

)]
—

—
—

D
m

ax
 (

Å
)

D
m

ax
 (

Å
)

D
m

ax
 (

Å
)

D
m

ax
 (

Å
)

37
-4

2
—

—
—

B
on

d 
ra

di
us

 (Å
)

B
on

d 
ra

di
us

 (Å
)

—
B

on
d 

ra
di

us
 (Å

)
—

43
-4

8
—

—
—

P
er

sp
. l

ab
el

 h
gt

. (
in

.)
P

er
sp

. l
ab

el
 h

gt
. (

in
.)

—
P

ol
y.

 N
R

 (
f)

P
ol

y.
 N

R
 (

f)

49
-5

4
—

—
—

⊥
 d

is
pl

ac
em

en
t (

in
.)

⊥
 d

is
pl

ac
em

en
t (

in
.)

—
P

ol
y.

 N
R

 (
t)

P
ol

y.
 N

R
 (

t)

55
-6

0
—

—
—

N
on

p.
 l

ab
el

 h
gt

. (
in

.)
N

on
p.

 l
ab

el
 h

gt
. (

in
.)

—
Po

ly
. D

m
in

 (
Å

)
Po

ly
. D

m
in

 (
Å

)

61
-6

6
—

—
—

⊥
 d

is
pl

ac
em

en
t (

in
.)

⊥
 d

is
pl

ac
em

en
t (

in
.)

—
Po

ly
. D

m
ax

 (
Å

)
Po

ly
. D

m
ax

 (
Å

)

67
-7

2
—

—
—

D
ig

its
 in

di
ca

to
r

D
ig

its
 in

di
ca

to
r

—
—

—



10

2.2  PROGRAMMING A NONSTEREOSCOPIC ILLUSTRATION FOR ORTEP

This section describes the general stepwise procedure to follow when writing an ORTEP
program to draw a single nonstereographic illustration of the contents of one unit cell. The instruc-
tion numbers used are examples only, and often other instructions may be used instead.

2.2.1  Graphics Setup

The first instruction card is instruction 201 (see 3.3.3), which initializes plotting.

Next, instruction 301 (see 3.3.4.1) is needed to set the following drawing parameters: x
dimension for the plot boundary, y  dimension for the plot boundary, viewing distance for perspec-
tive projection (or “0” as a signal for parallel projection), and border (or margin) dimension inside
the boundary. All values are supplied in inches.

2.2.2  Composing the Illustration

This step involves specifying which atoms are to be used as the figure subject, the rota-
tional orientation of the figure, and the scaling and positioning of the figure relative to the draw-
ing area. These three components of composition are implemented by the 400, 500, and 600
series instructions, respectively.

Atoms can be explicitly added to the figure with a 401 instruction (see 3.3.5.1). For unit
cell content drawings, the 404 instruction (see 3.3.5.3) is useful. It defines a triclinic box of enclo-
sure, and ORTEP determines which atoms appear in the figure. 

A 501 instruction (see 3.3.6.1) can be used to orient the crystal axes relative to the x  and y
axes of the plot. If additional adjustment of the figure orientation is necessary, a 502 instruction
(see 3.3.6.2) can be used after the 501. 

Scaling and positioning of the figure to fill the drawing area can be accomplished auto-
matically with a 604 instruction (see 3.3.7.1).

2.2.3  Drawing the Illustration

Crystal structure illustrations of the ball-and-stick type are made up of three components:
balls (atoms), sticks (bonds), and labels. The three components are drawn with the 700, 800, and
900 instruction series, respectively; the first two instruction series can also perform certain types
of labeling.  Before drawing any atoms or bonds, instruction 1001 (or 511) (see 3.3.12) should be
used to calculate and store the information needed for the overlap correction.

The atom representation can be either a general ellipsoid or a boundary ellipse. In some
cases, these become a sphere and a circle. Chemical symbols may be plotted simultaneously with
the atoms. A 704 instruction (see 3.3.8) will draw circles for all the atoms of the subject and put
the chemical symbols within the circles.

Bonds are not always necessary in a drawing; but for structures with molecules or with
distinctive groupings, they are usually quite helpful. The most convenient method for describing
and drawing bonds is instruction 812 (see 3.3.9.2). This instruction uses vector search codes (see
3.1.5) that reflect the user’s knowledge of the structural chemistry and the interatomic distance
ranges for the compound being drawn. Covalent bonds or any other desired type are found and
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drawn automatically from the list of atoms that make up the subject. If desired, the interatomic
distance label can also be drawn with the bond.

Various types of labeling can be done with the 900 series instruction. The one that will
most often be included is a caption for the figure, provided by the 902 instruction (see 3.3.10).

2.2.4  Terminating the Drawing of the Illustration

Instruction 202 with no parameters (see 3.3.3) terminates the plotting.

To terminate ORTEP, a -1 instruction (see 3.3.13) is used as the last instruction of the
input.

2.3  PROGRAMMING A STEREOSCOPIC ILLUSTRATION FOR ORTEP

A stereoscopic pair of figures is simply two perspective views of the subject as seen from
two different viewpoints (which are usually 5°–6° apart). This pair is produced with ORTEP by
programming for two drawings. A few instructions in addition to those outlined in Section 2.2 are
needed for producing stereo figures. These are the stereoscopic rotation instruction 503 and the
1100 series of instructions that are used to repeat a series of instructions. A program to draw a
stereo pair would involve the following steps.

1. set up the graphics
2. compose the subject
3. stereo rotate subject for left-eye view
4. store overlap information
5. draw the subject
6. shift plot origin for second view 
7. stereo rotate subject for right-eye stereo view
8. store overlap information
9. draw the subject

10. terminate plotting
11. terminate ORTEP

2.3.1  Stereoscopic Rotations

In general, one member of a detailed stereoscopic illustration cannot be drawn indepen-
dently of the other member of the pair because certain features (e.g., which octant of an ellipsoid
is shaded) must be done identically in the two drawings. In ORTEP the “stereoscopically sensi-
tive decisions” are handled by using two Cartesian coordinate systems: the reference system and
the working system (see 3.1.8). The steps involved in picture composition (see 2.2.2) and the
stereoscopically sensitive decisions are always based on the reference system, but the drawing of
the illustration (see 2.2.3) is always based on the working system. A stereoscopic rotation is sim-
ply a rotation of the working system from the reference system about the axis that is vertical while
viewing the final result. For example, a nominal rotation of +2.7° about the plot’s y  axis might be
used for the left-eye view and a rotation of -2.7° about the same axis might be made before plot-
ting the right-eye view, thus producing a total interocular angle of 5.4°.
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2.3.2  Repeating a Sequence of Operations

It should be noted that steps 8 and 9 in the program to draw a stereo pair, which actually
comprise several ORTEP instructions, are identical to steps 4 and 5. The program can be short-
ened somewhat by using the “save sequence” instructions (see 3.3.11). An 1101 instruction (start
save sequence) would be placed before step 4, and an 1102 instruction (end save sequence) after
5. Then steps 8 and 9 can be replaced by a single 1103 instruction (execute save sequence).

Any sequence of instructions can be saved in this manner and repeated as many times as
desired with 1103 instructions. For example, the save sequence feature can be used to produce a
complete series of views of a structure at 15° intervals about an axis. Note that the instructions
between the start and end instructions are both executed and saved the first time through.
 

2.4  DRAWING THE CUBANE STRUCTURE:  AN EXAMPLE

The standard example for illustrating the use of ORTEP is the novel compound cubane
(C8H8), whose structure was published by Fleischer in 1964.5 In cubane, the carbon-carbon bonds
lie along the edges of a cube within experimental error. The compound crystallizes with the trigo-
nal symmetry of space group R3

_
. The 3

_
 axis lies along a body diagonal of the molecule, and as a

result the compound contains only four unique atoms. These are one carbon and its attached
hydrogen in general positions off the 3

_
 axis (C1 and H1) and one carbon and its hydrogen in spe-

cial positions on the 3
_
 axis (C2 and H2). Anisotropic temperature factor coefficients were fitted to

the carbon atoms during the least-squares refinement of the structure, and isotropic temperature
factors were used for the hydrogen atoms. The anisotropic temperature factors given for the car-
bon atoms are of the type called zero† in this report (see 3.2.4.2).
 

To draw the structure the following information is needed:

Cell Parameters a = b = c = 5.34 Å, α  = β = γ = 72.26˚

Equivalent Positions of 
Space Group R3

_ x, y, z   z, x, y   y, z, x   x
_

, y
_

, z
_

   z
_

, x
_

, y
_

   y
_
, z

_
, x
_

Positional Parameters
        C1
        C2
        H1
        H2

          x                  y                 z
-0.18711  0.19519  0.10706
 0.11546  0.11546  0.11546
-0.32460  0.34680  0.18480
 0.21000  0.21000  0.21000

Anisotropic Temperature
Factor Coefficients 
        C1
        C2

     b11           b22          b33            bl2             bl3              b23
0.0410 0.0425 0.0450 -0.0042 -0.0142 -0.0051
0.0468 0.0468 0.0468 -0.0143 -0.0143 -0.0143

†Occasionally authors of structure papers neglect to define the equation for the aniso-
tropic temperature factor coefficients. In the present case, the type can be determined from
the comparative isotropic temperature factor listed in anisotropic form in Fleischer’s Table
II.5 In other instances, one must arbitrarily choose a type (usually 0, 1, or 4 in the USA), do the
principal axis transformation, and then check that the principal values are correct, or at least
reasonable. In particular, the principal values must all be positive.
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2.4.1  Data Input for Cubane

2.4.1.1  Title Card

The first line of input is a job title (see 3.2.1).

 CUBANE, E.B. FLEISCHER, J. AM. CHEM. SOC., 86, 3889 (1964)

2.4.1.2  Cell Parameter Card

Cell parameters are provided on the second line (see 3.2.2). The “1” in the first column
signals the format of the symmetry information that follows.

1    5.34     5.34     5.34    72.26    72.26    72.26

2.4.1.3  Symmetry Cards

The symmetry operators of the space group begin on line 3 of the input (see 3.2.3). The
last of these has a numeric value other than “0” in column 1.

  x, y, z
  z, x, y
  y, z, x
  -x, -y, -z
  -z, -x, -y
1 -y, -z, -x

2.4.1.4  Atomic Parameter Cards

Two cards are required for each atom. The first gives the atom’s positional parameters
(see 3.2.4.1), and the second provides its thermal parameters (see 3.2.4.2). The last atom has a “1”
in column 1 of its thermal parameter card. Atoms are frequently referenced in the ORTEP instruc-
tions by their numeric position within this list.

Atoms 1 and 2 are entered with positional parameter Type 0 and anisotropic temperature
factor Type 0.

  C1                         -.18711   .19519   .10706        0
0  .04100   .04250   .04500  -.00420  -.01420  -.00510        0
  C2                          .11546   .11546   .11546        0
0  .04680   .04680   .04680  -.01430  -.01430  -.01430        0

Atoms 3 and 4 are entered with positional parameter Type 0 and with dummy sphere tem-
perature factors (Type 7) with a radius of  0.1 Å before scaling.

  H1                         -.32460   .34680   .18480        0
0     .10                                                     7
  H2                          .21000   .21000   .21000        0
0     .10                                                     7
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A dummy atom (atom 5) at the cell origin is also included with a blank card dummy
sphere. This could also be entered with Type 7 as were atoms 3 and 4.

 ORGN                              0        0        0        0
1                                                             0

2.4.2  Analysis of Structure

The 100 series instructions (see 3.3.2) are neither associated with nor required for produc-
ing an illustration. They are shown here to demonstrate how they are used. A 101 instruction is
used to obtain a tabulation of the atoms surrounding one atom or a series of several designated
atoms. For example, to obtain a list of all atoms (hydrogen and carbon atoms) out to a distance of
3.61 Å about the two carbons C1 and C2, the following 101 instruction would be used.

     101   155501        2        1        4     3.61

(a) (b) (c)

where the parts designate:

(a) origin atoms 1 through 2 of symmetry operation 1,
(b)  target atoms 1 through 4 of all symmetry and translation operations, and 
(c) a distance Dmax of 3.61 Å.

A 102 instruction gives both interatomic distances and interatomic angles. The following
instruction could be used to find all covalent bonds and bond angles about the two carbons.

     102   155501        2        1        4      1.8

In this case a smaller Dmax is used so that only the distances and angles of immediate interest
would be computed since there are n(n - 1)/2 angles for n interatomic vectors about an atom.

2.4.3  Programming the Cubane Illustration

First, plotting is initialized with a 201 instruction (see 3.3.3).

     201
                                  
The two plot boundary dimensions can be equal for the present illustration since the

cubane molecule is a cube. A 2.8 × 2.8 inch boundary is specified with a 0.25 inch margin to give
a 2.3 × 2.3 inch square working area. A 10 inch view distance might be reasonable to use in view-
ing a model of this size. These are set with a 301 instruction. (See 3.3.4.1.)

     301      2.8      2.8      10.      .25

The subject of the illustration is a single complete cubane molecule. Since all the atoms
of the molecule were not provided in the input atoms list, the “missing” atoms may be found by
using a 402 instruction to specify a sphere of enclosure, centered on the dummy atom 5, which is
at the center of a cubane molecule. A radius of 3.2 Å should be adequate to find all the atoms and



15

isolate a single molecule. The atoms found by this instruction are stored in the ATOMS array.
(See 3.3.5.2.)

     402   555501        5        1        4      3.2

(a) (b) (c)

where the parts designate:

(a) a run of origin atom(s) representing sphere centers from atom 5 to atom 5 in
 symmetry position 55501 (in this example, a single sphere), 

(b)  a run of target atoms from atom 1 to atom 4, and 
(c) a sphere radius of 3.2 Å.

A 501 instruction is used to establish a coordinate system for orienting the molecule. In
this case, the coordinate system is defined along the edges of the cubane cube. The origin is posi-
tioned on the dummy atom 5. The desired coordinate system orientation is defined by specifying
two vectors from the special position atom 255501 to the two symmetry-related general-position
atoms 155501 and 155502. (See 3.3.6.1.)

     501   555501   255501   155501   255501   155502        0        0
                                                    

A 502 instruction is used to rotate the molecule relative to the established coordinate sys-
tem to optimize the appearance of the illustration. A rotation of 25° about the y axis (axis 2) fol-
lowed by a rotation of 28° about the x  axis (axis 1) will produce a satisfactory view of the mole-
cule. (See 3.3.6.2.)

     502        2      25.        1      28.
            

To position and scale the subject for projection onto the “drawing board” and to utilize all
available space, a 604 instruction is used, which automatically sets the origin and drawing scale.
It also sets the ellipsoid scale factor ratio SCAL2 to the value corresponding to 50% probability
unless a non-zero value is supplied on the instruction card. (See 3.3.7.1).

     604        0        0        0        0

The stereoscopic rotation for the left eye is specified next with a 503 instruction. A rota-
tion of 2.7° about the y axis (axis 2) is used. Later in the program, a –2.7° rotation about the same
axis will be made for the right-eye view to give a total interocular angle of 5.4°. (See 3.3.6.3.)

     503        2      2.7

Since the structure will be drawn twice, once for each eye, the “save sequence” feature is
used to shorten the program. Note that the instructions between the start (1101) and end (1102)
are both executed and saved  the first time through. They can then be re-executed as many times
as desired by using the “execute save sequence” instruction 1103. (See 3.3.11.) The 1101 instruc-
tion starts the save sequence.

    1101
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The 1001 (or 511) instruction stores the information needed for the overlap hidden-line
correction (i.e., as a projected boundary ellipse for each atom in the ATOMS array and a quadran-
gle approximation for each bond). The bonds are specified with a Format No. 2 trailer card identi-
cal to that used in the 812 instruction described below. (See 3.3.12.1.)

  2 1001        
          1  4  1  4  4   0.9   1.6   .04

The ATOMS array currently contains all the atom designators for one cubane molecule.
The molecule is drawn in two separate steps so that the hydrogen and carbon atoms can be given
different graphical representations. To draw the carbon atoms (ANR = 1,2), a standard model pro-
duced with the 716 instruction (new in ORTEP-III) is used. [This model is the same as that pro-
duced with a 705/715 instruction that (a) draws the three principal-plane forward traces and the
boundary-plane trace (NPLANE = 4), (b) omits the reverse sides of the principal planes (NDOT =
0), (c) draws the forward principal axes without additional shading (NLINE = 1), and (d) omits
the reverse principal axes (NDASH = 0).] In addition, chemical symbols are drawn with letters
0.07 in. high (before projection) and displaced from the atomic centers by 0.18 in. horizontally
and 0.21 in. vertically. (See 3.3.8.)

  1  716                                          .07      .18      .21
       0        0        0        1        2
                  

The hydrogen atoms (ANR = 3, 4) are drawn with a different standard model (instruction
712) than the carbon atoms. Chemical symbols are 0.07 in. high and offset 0.15 in. horizontally
and 0.13 in. vertically.

  1  712                                          .07      .15      .13
       0        0        0        3        4

The most convenient procedure for drawing bonds is to use the implicit bond instruction
812 (see 3.3.9.2). All other information can be entered with a single Format No. 2 trailer card.

  2  812
       1  4  1  4  4   0.9   1.6   .04

(a) (b) (c) (d) (e)

where the parts designate:

(a) origin atom number run of those atoms that must be at one end of each bond,
(b) target atom number run of those atoms that must be at the other end of each bond,
(c) bond type 4,
(d) the distance range, 0.9 to 1.6 Å, that will cover all covalent bond distances, and
(e) the bond radius, 0.04 Å.

The remaining fields on the card are blank since a complete set of bond distance labels is
not desired.



17

The last feature of the illustration is the labeling with 900 instructions (see 3.3.10).
Because of the symmetry, there are only two different C–C bond lengths in cubane. These are
C1–C1 and C1–C2. One example of each of these bonds is labeled. For variety, one is labeled
with a normal bond-length label and the other with a perspective label. The two bonds that can be
labeled most advantageously are 155504–155503 and  255504–155505. The labels will be 0.07 in.
high and displaced vertically from the bond center by -0.2 in.

     906   155504   155503        0        0      .07        0      -.2
     916   255504   155505        0        0      .07        0      -.2

Finally, a caption for the illustration is drawn. This can conveniently be positioned by
“hanging” it from the dummy atom 555501 and “bouncing” it 1.8 in. from the left x  boundary and
0.3 in. from the lower y boundary. The caption is 0.15 in. high.

  3  902   555501        0      1.8      0.3      .15        0        0
CUBANE

The save sequence is now terminated.

    1102

The plotting origin is then shifted 2.375 in. along x with a 202 instruction in preparation
for the right-eye view.

     202    2.375

The stereo rotation of -2.7° about axis 2 is now performed for the right-eye view with a
503 instruction. (Note that this rotation starts with the reference orientation, not the previous
working orientation.)

     503        2     -2.7

The save sequence is now repeated for the right eye. (Note that the ATOMS array con-
tains the same information that it did when the first view was drawn.)

    1103

The illustration is now complete. Plotting is terminated with a 202 instruction with no
parameters.

     202

Finally, a -1 instruction terminates the program. (See 3.3.13.)

      -1
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2.4.4  Illustration of the Example

Figure 2.1 shows a stereoscopic illustration of cubane exactly as it was produced by
ORTEP. The drawing has not been retouched. Note that one bond distance label was drawn in
perspective along the bond, and the other was drawn as a regular label parallel to the page.

Note , too, that while most of the atom labels are easy to read and it is clear which atoms
they are labeling, some are in locations where the atom being labeled is ambiguous and some are
not corrected for overlap. The first problem is the result of labeling a number of atoms with the
700 instruction that draws the atoms. More precise placement can be accomplished by labeling
atoms individually (see 7.1) though this can be a time consuming process. 

Overlap, particularly for chemical symbols and bond distance labels, is often one of the
major problems encountered when producing an illustration. For nonstereoscopic figures, it may
be better to add the lettering after the drawing is completed. However, for stereoscopic figures,
adding the lettering after the illustration is produced is unsatisfactory because of the necessity for
exact relative placement of the lettering on the two views to maintain good stereopsis. In this
case, it is best to let ORTEP place the lettering.

The ORTEP input consisting of the crystal data and ORTEP instructions used to produce
the structure illustration immediately follows the figure. The example utilizes a wide range of
instructions in order to demonstrate their use. As is the case with any programming system, there
are many ways of doing a given problem. The user should examine the example carefully since
several useful techniques are illustrated. Additional examples are provided in Section 7.

Fig. 2.1.  Cubane drawn by ORTEP as a stereoscopic pair.
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 CUBANE, E.B. FLEISCHER, J. AM. CHEM. SOC., 86, 3889 (1964)
1    5.34     5.34     5.34    72.26    72.26    72.26
  x, y, z
  z, x, y
  y, z, x
  -x, -y, -z
  -z, -x, -y
1 -y, -z, -x
  C1                         -.18711   .19519   .10706        0
   .04100   .04250   .04500  -.00420  -.01420  -.00510        0
  C2                          .11546   .11546   .11546        0
   .04680   .04680   .04680  -.01430  -.01430  -.01430        0
  H1                         -.32460   .34680   .18480        0
      .10                                                     7
  H2                          .21000   .21000   .21000        0
      .10                                                     7                 
 ORGN                              0        0        0        0
1                                                             0
# FIND ALL NEIGHBOR ATOMS AROUND C1 AND C2 OUT TO 3.61 A
      101   155501        2        1        4     3.61
# FIND COVALENT BONDS AND BOND ANGLES AROUND CARBONS
      102   155501        2        1        4      1.8
# INITIALIZE PLOTTING
      201
# 2.8x2.8 BOUNDARY, 2.3x2.3 INSIDE 0.25 MARGIN, VIEW FROM 10 INCHES                  
      301      2.8      2.8      10.      .25
# ENCLOSER SPHERE OF RADIUS 3.2 A ABOUT DUMMY ATOM 5,555,01
      402   555501        5        1        4      3.2
# ORIGIN ON DUMMY ATOM 555501, VECTORS ALONG 2 EDGES OF CUBANE
      501   555501   255501   155501   255501   155502                 0
# ROTATE 25 DEGREES ABOUT Y, THEN 28 DEGREES ABOUT NEW X
      502        2      25.        1      28.
# AUTOMATIC SCALE AND POSITION, 50 PERCENT PROBABILITY ELLIPSOIDS
      604        0        0        0        0
# STEREO ROTATION OF 2.7 DEGREES ABOUT Y FOR LEFT EYE
      503        2      2.7
# START SAVE SEQUENCE
     1101
# STORE PROJECTED ATOMS AND BONDS FOR OVERLAP, MARGIN SET BY DEFAULT
  2  1001        0
           1  4  1  4  4   0.9   1.6   .04
# DRAW CARBON ATOM ELLIPSOIDS, ATOM NUMBER RUN 1-2
  1   716                                          .07      .18      .21
                                   1        2
# DRAW HYDROGEN ATOM SPHERES, ATOM NUMBER RUN 3-4
  1   712                                          .07      .15      .13
                                   3        4
# TYPE 4 BONDS .04 A MEAN RADIUS, ATOMS 1-4 TO ATOMS 1-4, 0.9-1.6 A
  2   812
           1  4  1  4  4   0.9   1.6   .04   
# LABEL BOND 155504-155503 WITH REGULAR BOND DISTANCE LABEL
      906   155504   155503        0        0      .07        0      -.2
# LABEL BOND 255504-155505 WITH PERSPECTIVE BOND DISTANCE LABEL
      916   255504   155505        0        0      .07        0      -.2
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# DRAW TITLE
  3   902   555501        0      1.8      0.3      .15        0        0
CUBANE
# END SAVE SEQUENCE
     1102
# SHIFT DRAWING ORIGIN 2.375 INCHES ALONG X
      202    2.375
# STEREO ROTATION OF -2.7 DEGREES ABOUT Y FOR RIGHT EYE VIEW
      503        2     -2.7
# EXECUTE SAVE SEQUENCE FOR RIGHT EYE DRAWING
     1103
# TERMINATE PLOTTING
      202
# TERMINATE ORTEP
       -1
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3.  ORTEP INPUT

3.1  DEFINITIONS

Several terms must be defined before the instructions can be explained.

3.1.1  Atom Designator Code (ADC) and Addressable Point

A five-component atom designator code is used to specify a particular atom in the crystal
within a reasonable distance from the crystallographically defined origin.

ADC = AN*105 + (TA + 5)*104 + (TB + 5)*103 + (TC + 5)*102 + SN ,

where

AN = atom number (0 ≤ AN ≤ NATOM ≤ 500) – the numerical position of the atom in
the input list of atoms in the asymmetric unit, which contains NATOM atoms.
Atom 0 is not in the input atom list but refers to the crystal origin point (0.,0.,0.).

TA,TB,TC = crystal lattice translation digits –  translations along cell edges a , b, and c,
respectively. Each digit in an ADC can range from 1 to 9; consequently, it is pos-
sible to move up to 4 cells in any direction from the origin cell 555.

SN = symmetry operator number (0 ≤ SN ≤ NSYM ≤ 96) – the numerical position of the
symmetry operator in the input list of symmetry operators, which contains
NSYM entries. Symmetry operator number 0 is not in the input list but refers to
an identity operator. However, the identity operation (corresponding to position
x, y, z ) generally must be somewhere in the input symmetry operator list and is
usually the first operator.

Example: An atom designator code of 347502 refers to atom 3 moved through
symmetry operation 2, then translated -1 cell translation along a, +2 cell transla-
tions along b, and 0 cell translations along c.

An addressable point in the crystal is any point for which an atom designator code exists.
In general, the addressable region is approximately a 9 × 9 × 9 block of unit cells.

3.1.2  Vector Designator Code (VDC)

A vector designator code  defines a vector using two atom designator codes. The vector
direction is from the first to the second.

Example: 253704 263704 is a vector along the positive a direction of the crystal
lattice.

3.1.3  Atom Designator Run (ADR)

An atom designator run is a straight run sequence of atoms that is defined using two
atom designator codes with a “-” preceding the second of the two. The run hierarchy is: first,
atom number AN; second, symmetry operator number SN; third, a  translation TA; fourth, b trans-
lation TB; and last, c  translation TC.



22

Example: ADR (145502-245603) will generate the 8-atom run 145502, 245502,
145503, 245503, 145602, 245602, 145603, 245603.

The following exceptions are allowed in Org. ADRs of instructions 101, 102, 402/412, 403/413,
and 404/414 only:

• The “-” may be omitted from the second ADC.
• If the second atom in the atom designator run has the same symmetry and translation

components as the first atom, the second atom may be represented by its atom number
component alone.

• If the symmetry and translation components of both atoms are 55501, both atoms may
be represented by their atom number components alone.

Example: ADR (345502-745502) may also be represented as (345502 745502) or
(345502 7). ADR (355501-755501) may also be represented as (355501 755501)
or (355501 7) or (3 7).

3.1.4  Atom Number Run (ANR)

An atom number run is a subset of the atom designator run in which only the atom num-
ber AN changes. Normally, an ANR is entered by using only the atom number values for the first
and last members of the sequence without a “-”.

Example: (1 4) will designate atoms 1, 2, 3, and 4 of the input list.

3.1.5  Vector Search Code (VSC)

A vector search code  consists of two number runs and a distance range. It is used for
finding interatomic distances that have a particular chemical significance, such as covalent and
coordination bonds.

Example: Suppose that metal atoms are numbers 1 and 2 in the atom list, oxygen
atoms are 6-12, and the interatomic distance range between metals and oxygens
is 1.9 Å to 2.4 Å. The metal-to-oxygen vectors can be specified by the vector
search code (1 2) (6 12) (1.9 2.4). Several variations of this basic code are used in
ORTEP.

The vector searches in ORTEP-III for the 100 instructions and 400 instructions have been
generalized to allow both atom number runs and feature number runs (see 3.1.11) with the num-
ber run type (see 3.1.12) specified in column 24. In addition, it is no longer necessary to specify
all three screening ranges found on this card (i.e., origin, target, and distance range). Any ranges
not specified (i.e., zero or blank in the maximum value entry) are omitted from the screening. If
there is more than one vector search card for an instruction, the parameter LOGC controls the
logic of the screening. If the value is “0” (the default), an atom satisfying the screening conditions
on any one of the No. 2 trailer cards will be retained (i.e., it is a logical union of the results). If the
value is “1”, an atom must satisfy the screening conditions on all the cards to be retained (i.e., it is
an intersection of the results). If a value of “1” is needed for LOGC, a “1” is placed in column 27
of a Format No. 1 trailer card that goes between the main instruction card and the Format No. 2
VSC cards. If the value for LOGC is “0”, the Format No. 1 card is not needed. 
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3.1.6  Sphere of Enclosure

A sphere of enclosure  specifies some or all of the atoms lying within a sphere of radius
Dmax about a given “origin” atom without the necessity of delineating each atom individually.
The sphere of enclosure is said to contain a complete population if all addressable atoms within
the Dmax radius are included. If the sphere of enclosure contains only certain types of atoms that
are derived from a group of sequential atoms in the input list or atoms having particular features,
then the sphere is said to have a partial population. Finally, the population (complete or partial)
of the sphere of enclosure can be screened as selectively as desired through the use of vector
search codes (see 3.1.5), and the resulting content is called a vector screened population.

A sphere of enclosure can be centered on any addressable atom, but the origin atom
should not be chosen in the outermost cells because of the possibility of having nonaddressable
points within the Dmax radius.

3.1.7  Box of Enclosure

A box of enclosure  is a parallelepiped that can be centered about any addressable point
and assigned arbitrary orientation and dimensions. The orientation depends upon either the unit
cell axes (triclinic box of enclosure) or the reference axes (rectangular box of enclosure). The box
of enclosure can have a complete  population, a partial population, or a vector screened popula-
tion as described for the sphere of enclosure (see 3.1.6).

3.1.8  Reference, Working, and Standard Cartesian Coordinate Systems

Many of the ORTEP calculations use fractional coordinates based on the crystal axes a ,
b, and c  (triclinic coordinate system); but other steps necessitate the introduction of orthonormal
base vector triplets (Cartesian coordinate systems). Two Cartesian systems—reference and work-
ing—are utilized. The reference (major) system is used for all operations except plotting, where
the working (minor) system is used. For a right-eye or left-eye stereo view, the working system is
moved from the reference system by rotation about an axis of the reference system. However,
certain decisions made while plotting must still be referred to the reference system to maintain
accurate stereopsis. The user can define and orient the two Cartesian systems through the series
500 instructions. Until a 500-series instruction is given, a “standard Cartesian system” is utilized
for both the reference and working systems. The orthonormal base vectors of the standard system
are oriented as follows:

x axis along a ,

y axis along (a  × b) × a,

z axis along (a  × b) = c*,

where a, b, and c are crystal axes and × denotes the outer vector product (cross product). The
symbol c* refers to a reciprocal axis.

3.1.9  Prime Parameters and Primer Constants

The more basic among the many settable parameters in ORTEP are the prime  parame-
ters. The default values assigned to these prime parameters are often similar or identical from one
problem to the next. Among the first things ORTEP does is a call to subroutine PRIME, which
sets as many prime parameters as possible to reasonable default primer constant values. For
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example, the maximum plot dimensions (instruction 301) are set to 10.5 in. for xmax and 8.0 in.
for ymax, and the overall scale for plotting (instruction 600 series) is set to 1.0 in./Å. If the value
assigned to a particular constant by the PRIME subroutine is satisfactory, the user does not have
to change the value with ORTEP instructions.

3.1.10  Atom Feature

An atom feature  is a user-defined characteristic of a group of atoms that may be assigned
to the atoms in the ORTEP input as needed for a given task. For example, the atomic number may
be provided with each atom to make selecting atoms of the same element easier. Up to two fea-
tures may be assigned to each atom. These are referred to as Feature #1 and Feature #2. (See 4.6.)

3.1.11  Feature Number Run (FNR)

A feature number run  is used to identify those atoms having a particular atom feature
within a specified value range.

3.1.12 Number Run (NR) and Number Run Type

A number run  is a generic term that refers to both atom number runs (ANR) (see 3.1.4)
and feature number runs (FNR) (see 3.1.11). The number run type identifies the number run.
Number run type 0 refers to an ANR, type 1 refers to an FNR on Feature #1, and type 2 refers to
an FNR on Feature #2.

3.2  CRYSTAL STRUCTURE DATA INPUT

3.2.1  Title

The first card in the ORTEP input is a title card with FORMAT (18A4), consisting of up
to 72 characters of alphanumeric identification information. This will appear periodically in the
output file.

3.2.2  Cell Parameters

The second input card contains the cell parameters with FORMAT (I1,F8.6,5F9.6). Any
one of the following four input alternatives may be used.

Columns Type A Type B Type C Type D

1 Symmetry
format indicator

Symmetry
format indicator

Symmetry
format indicator

Symmetry
format indicator

2-9 a (Å) a (Å) a* (Å
-1

) a* (Å
-1

)

10-18 b (Å) b (Å) b*  (Å
-1

) b*  (Å
-1

)

19-27 c (Å) c (Å) c* (Å
-1

) c* (Å
-1

)

28-36 α (˚) cos α α* (˚) cos α*

37-45 β (˚) cos β β* (˚) cos β*

46-54 γ (˚) cos γ γ* (˚) cos γ*
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No indicator is needed to specify the input type. The routine assumes that a ≥ 1.0 Å, a* < 1.0 Å-1,
α (or α *) ≥ 1.0°, and |cos α| (or |cos α*|) < 1.0. The parameters a*, etc., refer to the reciprocal
unit cell such that a·a* = 1. All four types will be printed in the output regardless of which type
was used for input.

An integer value in column 1 of the cell parameter card indicates the format used for the
crystal symmetry cards that follow.

3.2.3  Symmetry

Crystal symmetry in ORTEP-III may be supplied in either of two styles. The first of these
is identical to that of OR TEP-II2 and is triggered by having a “0” or blank in column 1 of the cell
parameter card. A “1” in that position indicates the symmetry operators are provided in a free
format using the xyz coordinate triplet notation found in the International Tables for Crystallogra-
phy.4 These two styles are referred to as Type 0 and Type 1, respectively. 

The number of symmetry cards (NSYM) may not exceed 96. At least one (the identity
operator) is required. The reason for the maximum of 96 is that the symmetry operator number
(SN) occupies only two places in the ADC (see Sect. 3.1.1). If it is not possible to supply all the
symmetry operators for the space group (or if the user chooses not to supply all of them), each
unique atom in the ORTEP input file will require multiple entries with those lattice centering
translations added that are not provided in the symmetry cards. (See 7.5 for an example.)

A Type 0 symmetry card has FORMAT (I1,F14.10,3F3.0,2(F15.10,3F3.0)) and will be
interpreted in one of two ways, depending on the value of the number in columns 70-72. If that
number is < 5.0, the card is interpreted as a crystallographic symmetry operation; but if the num-
ber is ≥ 5.0, the card is interpreted as a general helix-screw symmetry operation† along the c*
crystal axis (third axis of the standard Cartesian system; see 3.1.8). The two symmetry types can
be intermixed if desired.

†The general helix-screw symmetry operation is not an allowed element of a crystallo-
graphic group, so the molecular environment of the transformed unit will not in general be
identical to that of the untransformed unit (unless the crystal is considered to be one dimensional).
This input is simply an expedient for use in plotting helical polymer structure models with
minimum input. In general, it would be possible to produce the same results by specifying the
complete crystallographic asymmetric unit and normal crystallographic symmetry transforma-
tions.

This input mode is only meaningful if the cell angles α  and β are 90°, so that c lies along
c* and the helix can continue uninterrupted from cell to cell along the c axis.
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(a) Crystallographic symmetry (b) Helix symmetry
Columns (70-72 < 5) (70-72 ≥ 5)

1 ≠ 0 last card only ≠ 0 last card only

2-15 T1 T1

16-18 S11 —

19-21 S12 —

22-24 S13 —

25-39 T2 T2

40-42 S21 —

43-45 S22 —

46-48 S23 —
49-63 T3 T3

64-66 S31 L

67-69 S32 M

70-72 S33 N

(a) Crystallographic symmetry: Transformed triclinic coordinates (X l,Yl,Zl) are obtained
from input triclinic coordinates (X,Y,Z) by

X1 = T1 + S11X + S12Y + S13Z,

Y1 = T2 + S21X + S22Y + S23Z,

Z1 = T3 + S13X + S32Y + S33Z,

or in matrix notation

X1 = T + SX,

where T = (T1,T2,T3) as fractions of cell edges.

Only symmetry cards for general  symmetry equivalent positions are permitted. Symme-
try cards that explicitly designate special positions such as X ,X,X; X,X,Z; X,Y,0; 1/4,Y,0; and
1/4,3/4,0 are not allowed .

(b) Helix screw symmetry:

X1 = T + SX,

where T = (T1,T2,T3+L/N) as fractions of cell edges and S is a counterclockwise rotation of L·M/N
cycles about the c* axis.

Example: The Pauling and Corey right-handed alpha helix of poly-L-alanine
repeats after 13 turns and 47 residues and can be represented by 47 symmetry
cards with N = 47; M = 13; L = 0, 1, …, 46; Tl, T2, T3 = 0. The input atom list
then contains the contents of one residue. (See 7.2.)
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Type 1 crystallographic symmetry cards do not have a specific format with the following
two exceptions: (1) the symmetry information on each card must not go beyond column 72, and
(2) column 1 must be “0” (or blank) on all symmetry cards other than the last one in the set,
which must be non-zero. Below is an example set of Type 1 symmetry cards to illustrate the flexi-
bility of this style.

 X,Y,Z
 X    -Y   Z+1/2
   X+0.5,   Y+.5,  Z
1x+1/2,-y+1/2,1/2+z

As shown, letters may be either upper or lower case. Commas or blanks may be used to
separate the components of the triplet. The three components may not have blanks within them.
Decimal fractions may be used with or without an initial 0. Fractions may precede or follow the
letters.

Regardless of how the symmetry information is provided, the last card of the set must
have a non-zero value in column 1 to signal the end of the symmetry cards. If the value is “1”, the
atom parameter information immediately follows in the ORTEP input file as described in Section
3.2.4. If the value is “2”, the atom parameter information is read from a different file (see 4.5),
and the ORTEP instructions follow the symmetry cards.

3.2.4  Atom Parameters

Two cards are required for each input atom. The first contains the chemical symbol , posi-
tional parameters, and feature information, if needed, The second contains temperature factor
information or other information that specifies how the atom is to be represented on the drawing.
Several alternate inputs are possible for each of the two cards, and the number in column 63
denotes the type used on that particular card. The number of atoms (variable NATOM) may range
from 1 to 500.

3.2.4.1  Positional Parameters

The positional parameter cards have FORMAT (A6,3X,6F9.0).

Columns Type 0 Type 1 Type 2 Type 3

1-6 Up to six alphanumeric characters centered in the six-place field

7-9 —

10-18 [Feature #1] [Feature #1] [Feature #1] x0 (Å, Cartesian)

19-27 [Feature #2] [Feature #2] [Feature #2] y0 (Å, Cartesian)

28-36 x (fractional, crystal) x (Å, crystal) x (Å, Cartesian) r (Å, cylindrical)

37-45 y (fractional, crystal) y (Å, crystal) y (Å, Cartesian) φ (˚, cylindrical)

46-54 z (fractional, crystal) z (Å, crystal) z (Å, Cartesian) z (Å, cylindrical)

63 0 1 2 3
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Type 0 is the normal input based on triclinic coordinates. Coordinates in Angstroms
along the unit cell vectors may be entered with Type 1. Type 2 may be used to place a model
described in Cartesian coordinates onto a general triclinic lattice. The orientation of the Cartesian
system xyz  in the general lattice abc is the standard type described in Section 3.1.8 with x  along a
and z along c*. Type 3 is similar to Type 2 except that cylindrical coordinates r, φ, z are used and
the axis of the system can be displaced from zero in the xy  Cartesian plane by the displacement
x0, y0. Cylindrical coordinates are often used to describe helical structures. The x0, y0 translation
should be zero if helical symmetry operators are used. This translation feature is meant to be used
for explicitly describing the contents of a multiple helix cell.

Column fields 10-18 and 19-27 on Type 0, 1, and 2 positional parameter cards may be
used in ORTEP-III to enter “feature” information about the atoms (see 3.1.10 and 4.6). Normally,
these fields are ignored by ORTEP so any numeric values may be here or the fields may be blank.
The information in these fields will be interpreted as atom features only if instructions are
invoked that specifically look at atom features. Features cannot be entered on Type 3 positional
parameter cards.

3.2.4.2  Temperature Factors

Temperature factor cards have FORMAT (I1,F8.0,5F9.0,7X,F2.0).

Columns
Type

0,1,2,3,10
Type

4,5,8,9 Type 6 Type 7

1   A sentinel ≠ 0 for last atom only

2-9 b11 U11 B B R R

10-18 b22 U22 0 0 0 0

19-27 b33 U33 0 VDC1 (from) 0 VDC1 (from)

28-36 b12 U12 0 VDC1 (to) 0 VDC1 (to)

37-45 b13 U13 0 [VDC2 (from) 0 [VDC2 (from)

46-54 b23 U23 0 VDC2 (to)] 0 VDC2 (to)]

55-63 0,1,2,3,10 4,5,8,9 6 (or 0) 6 (or 0) 7 7

Anisotropic temperature factor Types 0, 1, 2, 3, and 10 use the following formula for the
complete temperature factor.

-D(b11h2 + b22k2 + b33l2 + cb12hk  + cb13hl  + cb23kl)
Base

The coefficients bij(i,j = 1,2,3) of the various types are defined with the following constant set-
tings.

Type 0: Base = e , c = 2, D = 1

Type 1: Base = e , c = 1, D = l 

Type 2: Base = 2, c  = 2, D = l

Type 3: Base = 2, c  = 1, D = l

Type 10: Base = e , c = 2, D = 2π2
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Anisotropic temperature factor Types 4, 5, 8, and 9 use the following formula for the
complete temperature factor, in which a1

*, a2
*, a3

* are reciprocal cell dimensions.

exp[ -D(a1
*2U11h

2 + a2
*2U22k

2 + a3
*2U33l2 + C a1

*a2
*U12hk + C a1

*a3
*U13hl  + C a2

*a3
*U23kl)] 

The coefficients Uij(i,j  = 1,2,3) of the various types are defined with the following constant set-
tings.

Type 4: C = 2, D = 1⁄4
Type 5: C = 1, D = 1⁄4  

Type 8: C = 2, D = 2π2

Type 9: C = 1, D = 2π2

Type 6 allows the input of the Debye-Waller isotropic temperature factor B, which is
used as follows:

exp (-B sin2 θ/λ2) ,

where λ is the wavelength and θ is the Bragg angle. The parameter B is related to mean-square
displacement µ 2  of the atom from its mean position by the relation

B = 8π2 µ 2 .

When the isotropic temperature factor is used, the atom is represented as an isotropic
ellipsoid (sphere) with equal principal axes of length µ. When the field in columns 19-27 is “0” or
blank, the directions of the principal axes are along the standard Cartesian system axes (see
3.1.8). However, these arbitrary orthogonal vectors can be reoriented by using the two vector des-
ignator codes VDCl and VDC2; then the three new principal-axis vectors will be VDCl, (VDCl ×
VDC2), and VDC1 × (VDC 1 × VDC2). This is strictly an artistic feature of no physical signifi-
cance.

Type 7 allows the input of arbitrary spheres of radius µ  = R in Angstroms. The vector
triplet orientation is specified as with Type 6. An additional capability allows a completely blank
card (except perhaps column 1) to be used for a temperature factor card. In this case the program
assumes Type 7 with an R = 0.1 Å.

If VDC2 is omitted on Type 6 or Type 7 temperature factor cards, the program will
choose one of the three lattice vectors for VDC2.

A Type 10 temperature factor input card may be used to load Cartesian temperature fac-
tors having components in the standard Cartesian system (see 3.1.8). This capability complements
the Type 3 Cartesian positional parameter input system (see 3.2.4.1) and is useful for plotting
mean-square displacements caused by internal molecular motions as calculated from spectro-
scopic normal-coordinate analyses.6,7

New in ORTEP-III is the method for specifying the orientations and sizes of the elon-
gated pass (cigar-shaped) and flattened pale (pancake-shaped) ellipsoids used in critical net illus-
trations (see 7.5) without giving their quadratic form coefficients. The temperature factor card
following the atom parameter card for a pass or pale has the format shown below.
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Columns

1  A sentinel ≠ 0 for last atom only

2-9 Unique axis length (Å)

10-18 Second (and third) axis length (Å)

19-27 VDC1 (from)

28-36 VDC1 (to)

37-45 [VDC2 (from)

46-54 VDC2 (to)]

63 7

VDC1 is a vector parallel with the unique axis of the cigar-shaped pass or pancake-
shaped pale and VDC2 is a second vector not parallel with VDC1 such that VDC1 × VDC2 is a
second principal axis of that ellipsoid. If VDC1 and VDC 2 are parallel, VDC2 is replaced by a
suitable lattice translation vector. VDC2 may be omitted from the input if desired, and the pro-
gram will choose one of the three lattice vectors for VDC2. 

3.3  INSTRUCTION INPUT

The instructions are the commands used in programming an illustration, and there is no
required sequence for the instructions, except as indicated by the programming logic. 

3.3.1  Instruction Format

There are four different formats used for ORTEP instructions, which are numbered 0, 1,
2, and 3. Format No. 0 is always used for a new instruction and includes the instruction number.
Some instructions require trailer (continuation) cards, which use Format Nos. 1, 2, and 3. The
program is informed what the format of the next card will be with the value in the “look ahead”
field, column 3. The program action is also influenced by this information.

“Look ahead”
on current card

(column 3) Next card will be Program action

0 or blank Format No. 0, a new instruction Execute present instruction; then
read next new instruction card

1 Format No. 1, continuation of Read continuation card and then
present instruction check its “Look ahead”

2 Format No. 2, continuation of Read continuation card and then
present instruction check its “Look ahead”

3 Format No. 3, alphanumeric Read alphanumeric information
information and execute instruction; then

read next new instruction card



31

The Format No. 0 instruction card and the Format No. 1 parameter continuation card
have the FORMAT (I3,I6,7F9.0), but the former includes the instruction number while the latter
does not. A maximum of 19 Format No. 1 continuation cards per instruction is permitted.

Columns
Format No. 0

Instruction Card
Format No. 1

Parameter Continuation Card

3 “Look ahead” (0,1,2,3) “Look ahead” (0,1,2,3)

4-9 Instruction number Blank

10-18 1st parameter 8th parameter,
or 15th, …, or 134th

19-27 2nd parameter 9th parameter,
or 16th, …, or 135th

… … …

64-72 7th parameter 14th parameter,
or 21st, …, or 140th

The Format No. 2 trailer card is also used for parameter continuation, but it is more com-
pact with FORMAT (I3,6X,5I3,8F6.0), allowing more information to be entered than on the
Format No. 1 card. Many, but not all, Format No. 2 trailer cards include vector search codes (see
3.1.5), and they are often referred to as Vector Search Code (VSC) cards. A maximum of 20
Format No. 2 continuation cards per instruction is permitted.

Columns
Format No. 2

Parameter Continuation Card

3 “Look ahead” (0,1,2,3)

4-9 —

10-12 1st integer parameter

… …

22-24 5th integer parameter

25-30 1st real parameter

… …

67-72 8th real parameter

Format No. 3 trailer cards with FORMAT (18A4) are used for entering label information
and are required for instructions 902, 903, and 913. As a trailer to these, they may contain up 72
characters of alphanumeric information in columns 1-72, centered about columns 36 and 37 or
beginning in column 1 for automatic centering. These may also be used with other instructions as
a device to transfer comments about the particular instruction to the ORTEP output listing. There
is no “look ahead” column in Format No. 3; the next card must be a new instruction card.
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3.3.2  Structure Analysis Instructions (100 Series)

This series of instructions is not connected with drawing illustrations but rather with
obtaining a convenient tabulation of the chemically interesting aspects of a crystal structure,
including interatomic distances and angles and principal axes of thermal motion. If the ORTEP
output is omitted (see 4.1), these instructions do nothing.

3.3.2.1  Instructions 101 and 102

These instructions call subroutine SEARC, which finds all “target” atoms within a sphere
of enclosure of radius D max about a particular “origin” atom. The instruction card has an atom
designator run (see 3.1.3) of one or several origin atoms (Org. ADR) and an atom number run of
target atoms (Tar. ANR). The Org. ADR allows calculation of several spheres successively with a
printout of results after each one. 

Example: Suppose there are nine atoms in the input list and we want to find all
atoms surrounding atoms 365502, 465502, and 565502 out to a maximum radius
of 4 Å.

             101   365502        5        1        9      4.0

The selection of the interatomic vectors from a particular origin atom to the target atoms
can be narrowed with a vector search code on a Format No. 2 continuation card (see 3.3.1). The
first line of the instruction defines a limiting sphere of vectors, and the VSC finds the subset of
vectors that satisfy the additional restriction. (See 3.1.5.)

Example: Suppose we want to limit the results of the search in the preceding
example to the shell of atoms that lie 2.0-2.7 Å from each of the origin atoms.

         2   101   365502        5        1        9      4.0

                  3  5  1  9  0   2.0   2.7

Vectors found about a particular origin atom are stored in a table of dimension 200 sorted
on distance. Duplicate vectors (not duplicate distances) are eliminated. If more than 200 accept-
able atoms are found about an origin atom, the 200 shortest vectors are saved. At the end of the
search about each origin atom, the distances are printed out along with the atom designator codes,
chemical symbols, and triclinic crystal coordinates for the origin and target atoms. If the instruc-
tion is 102, all possible interatomic angles and interatomic distances for the edges opposite the
angles are also calculated and printed for the stored vectors. There will be n(n—1)/2 angles for n
vectors. The tabulation of atom designator codes, which is obtained automatically when these
instructions are given, is often useful for planning an illustration.
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Columns
Instructions
101 and 102 Columns

Format No. 2
Vector Search Code

(if used)

3 0, 1, or 2 3 0 or 2

7-9 101 or 102 4-9 —

10-18 Org. ADR (from) 10-12 [Org. NR (from)

19-27 Org. ADR (to) 13-15 Org. NR (to)]

28-36 Tar. ANR (from) 16-18 [Tar. NR (from)

37-45 Tar. ANR (to) 19-21 Tar. NR (to)]

46-54 Dmax (Å) 24 [NR type]

25-30 [Dmin (Å)

31-36 Dmax (Å)]

Columns

Format No. 1
Continuation Card

(if needed)

3 2

7-9 —

10-18 —

27 LOGC

3.3.2.2  Instruction 103

Principal axes of thermal motion (or arbitrary spheres, according to the temperature fac-
tor input) for all atoms in the input list are calculated. The printout contains root-mean-square
amplitudes of displacement along the principal axes of the trivariate normal probability density
function and direction cosines for the principal axes relative to the reference Cartesian base vec-
tors. A symmetric covariance dispersion matrix based on the reference Cartesian system is also
printed out. The diagonal elements are the mean-square displacements along the reference Carte-
sian axes.

Columns Instruction 103

7-9 103

10-72 Blank

3.3.2.3  Instructions 105 and 106, Convoluting Sphere of Enclosure and Reiterative Convo-
luting Sphere of Enclosure

These instructions utilize the ATOMS array and thus can only be used after one or more
atoms have been placed in the table by a 40 n instruction (see 3.3.5). The contents of the array are
returned to the condition of entry at the conclusion of instructions 105 and 106.
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All atoms in the ATOMS array that have atom or feature numbers within the origin num-
ber run (Org. NR) of the instruction are used as origin points. Interatomic distances for all neigh-
boring atoms (whether or not in the ATOMS array) are found out to the specified radius. Vector
search codes on Format No. 2 continuation cards may be used for screening if desired. (See
3.1.5.)

Instructions 105 and 106 are similar, except that instruction 106 keeps repeating the “con-
volution” process until no new atoms with atom numbers within the Org. NR are found. Instruc-
tion 106 is useful for molecular structures where the atoms in the input asymmetric unit do not
form an intact molecule. In a case of this nature, it is advisable to place a single atom into the
ATOMS array with a 401 instruction and let a 106 instruction find the molecule. Care must be
taken to specify a Dmax that will enclose only bonded atoms. The 106 instruction should not be
used for structures forming infinite chains. Instead, a short sequence of 105 instructions can be
used for this case.

Columns
Instructions
105 and 106 Columns

Format No. 2
Vector Search Code

(if used)

3 0, 1, or 2 3 0 or 2

7-9 105 or 106 4-9 —

10-18 Org. NR (from) 10-12 [Org. NR (from)

19-27 Org. NR (to) 13-15 Org. NR (to)]

28-36 Tar. NR (from) 16-18 [Tar. NR (from)

37-45 Tar. NR (to) 19-21 Tar. NR (to)]

46-54 Dmax (Å) 24 [NR type]

63 NR type 25-30 [Dmin (Å)

31-36 Dmax (Å)]

Columns

Format No. 1
Continuation Card

(if needed)

3 2

7-9 —

18 —

27 LOGC

3.3.3  Plotter Control Instructions (200 Series)

The 200 series is a group of instructions that control the device, real or virtual, that
receives the information to output the ORTEP illustration. This may be, for example, an actual
hardware plotter, a computer monitor, or a file of page description language instructions that will
produce a hard copy of the illustration when the file is downloaded to a printer/plotter. Because
no single word can describe all of the possibilities, the word “plotter” will be used in this report.
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The 200 instructions control plotter initialization, plot origin, color control, termination,
and any other peripheral commands that are required for a particular equipment configuration or
plotting package. When the program is modified for a different equipment configuration, the
series 200 instructions, which are executed through subroutine F200, should be redefined to suit
the user’s requirements.

The 201 instruction initializes plotting and must be executed before any plotting can take
place. It is a safe policy always to make this the first instruction card. If the 201 and 301 instruc-
tions are omitted, all calculations are carried out but no plotting is done. The 202 instruction with
no parameters is used to terminate plotting. With parameters, the 202 instruction may be used to
shift the plot origin. The 201/202 (with no parameters) form an initialize/terminate pair and must
always appear in pairs in the ORTEP input file. The pair may occur more than once  (unlike OR
TEP-II2). Each call to 201 begins a new plot page.

Instruction 204 is used to change the color of (or plotter pen used for) subsequent plot-
ting. The default value is 0 for black (or pen #1). The screen and Postscript drivers built into
ORTEP-III define color value 2 as red, 3 as green, 4 as blue, 5 as cyan, 6 as magenta, and 7 as
yellow. (The value 1 is also black or pen #1.)

Instruction 205 is used to vary the thickness of subsequently plotted lines. The unit for
width is thousandths of an inch, and the default value is 5. For both the 204 and 205 instructions,
if columns 10-18 contain “0” or are blank, the default settings are restored. 

Columns
Instruction

201
Instruction

202
Instruction

204
Instruction

205

Shift plot
origin

Terminate
plotting

7-9 201 202 202 204 205

10-18 — Shift along x
(in.) — Color

(or pen #)
Pen width

19-27 — Shift along y
(in.) — — —

3.3.4  Drawing Parameter Instructions (300 Series)

This is a set of instructions for specifying the drawing dimensions, viewing distance, gen-
eral lettering orientation, pen displacement for line retracing, and ellipse smoothness.

3.3.4.1  Instruction 301, Drawing Boundaries, Margin, and Viewing Distance

This instruction defines the maximum x  and y dimensions of the drawing and the margin,
all in inches. The boundary dimensions must not exceed those allowed by the plotter. The pro-
gram will prevent the pen from getting closer than 0.1 in. to any boundary. The drawing margin is
a constant width border inside the entire boundary. When automatic scaling is used (600 series),
the center points of the atoms are prevented from falling in the margin; but the atom representa-
tion, which has a finite size, may extend into that area. To accommodate this extension into the
margin, the margin width should be large when the overall drawing scale and the ellipsoid scale
are expected to be large.
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In addition, instruction 301 specifies the perspective viewing distance, in inches, from the
plane of the drawing. An entry of “0” for view distance is used to indicate an infinite view dis-
tance, and the crystal structure is then mapped in parallel projection normal to the drawing board.

Columns Instruction 301 Primer Constant

7-9 301 —

10-18 Drawing xmax (in.) 10.5

19-27 Drawing ymax (in.) 8.0

28-36 View distance (in.) 0. (parallel projection)

37-45 Margin width (in.) 0.5

3.3.4.2  Instruction 302, Title Rotation

For regular titles and chemical symbols, the title rotation is specified with instruction
302. The lettering base line for all lettering is rotated counterclockwise by an angle theta, in
degrees, from the x axis of the plotter. Although any value is allowed, 0° and -90° are the values
most often used so that the finished drawing has either the y plotter axis vertical or the x plotter
axis vertical.

Columns Instruction 302 Primer Constant

7-9 302 —

10-18 θ (˚) 0.

3.3.4.3  Instruction 303, Retrace Displacement

Instruction 303 directs certain lines to be made heavier than others by retracing over the
path several times with slight pen displacements (DISP) from the original path. For example, if
DISP is greater than 0., the forward half of the principal plane trace of ellipsoids is drawn heavier
than the hidden half so the eye does not confuse the two halves. Also, all regular lettering (but not
perspective lettering) is gone over four times to give it a boldface appearance. In ORTEP-III,
retracing is turned off by default with the primer constant for DISP set to 0. in. Retracing can be
turned on with the 303 instruction, using a value for DISP greater than 0. (0.005 in. usually works
well).

Columns Instruction 303 Primer Constant

7-9 303 —

10-18  DISP (in.) 0.

3.3.4.4  Instruction 304, Ellipse Smoothness

Instruction 304 may be used to adjust the smoothness of the plotted ellipses as a function
of their size. Smoother ellipses require more computational time and produce larger illustration
files. (See 5.2.) Smaller smoothness factors produce smoother ellipses, and larger values produce
ellipses with more “jaggies”. Factors in the range 0.5–3.0 are recommended; the default value is
1. A value of  0 will draw all size ellipses with 128 points, the maximum provided in ORTEP.
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Columns Instruction 304

7-9 304

10-18 Smoothness factor

3.3.5  ATOMS Array Instructions (400 Series)

This series allows the user to specify which atoms are to be included in the illustration.
The atom designators for the chosen atoms are stored in the ATOMS array for future use by other
instructions. The ATOMS array as currently dimensioned holds 500 input atoms, but it can be
changed by redimensioning the array in COMMON and setting the variable NATOM in subrou-
tine PRIME to the new value.

Groups of atoms are added to or eliminated from the ATOMS array (which is set to zero
at the start of the program) with the 40n and 41n series, respectively. The groups can be denoted
by atom designator runs (see 3.1.3), spheres of atoms about any center point (see 3.1.6), and
boxes of atoms centered on any point (see 3.1.7). Duplicate entries of the same atomic position
are prevented by the program. The content of the ATOMS array is printed in the ORTEP output
file after each 400 series instruction.

3.3.5.1  Instructions 401/411, Atom Designator Run Add/Eliminate

These instructions may contain: (a) atom designator codes for single atoms; (b) atom des-
ignator runs for several atoms in a run; (c) blank fields (except between the two entries of a run);
and (d) any combinations of (a), (b), and (c). Since up to 19 Format No. 1 continuations are possi-
ble per instruction, up to 70 runs can be made per instruction and an unlimited number of instruc-
tions can be used. The ATOMS array and overlap calculation, however, will only accept the first
500 atoms.

Columns Instructions 401/411

3 0 (or 1 if continued)

7-9 401 or 411

10-18
·
·
·

64-72

As described above

3.3.5.2  Instructions 402/412, Sphere of Enclosure Add/Eliminate

These instructions allow the user to build or modify the ATOMS array by specifying the
contents (complete, partial, or vector screened) of a sphere of enclosure (see 3.1.6) about any
addressable point. Instruction 402 adds the contents of the spheres to the ATOMS array omitting
positional duplications. The 412 instruction eliminates atoms within the spheres from the
ATOMS array if they are present in that array. The instructions call subroutine SEARC, and the
instruction input details are identical to those of instructions 101 and 102 (see 3.3.2.1) except for
the instruction number. In the ORTEP output file, only the ATOMS array atom designator codes
are printed and not the coordinates and interatomic distances. If the origin atoms on which the
spheres of enclosure are centered are to be saved, the target atom number run (Tar. ANR) must
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contain those atom numbers. Vector search codes on Format No. 2 continuation cards may be
used for screening if desired. (See 3.1.5.)

Columns
Instructions

402/412 Columns

Format No. 2
Vector Search Code

(if used)

3 0, 1, or 2 3 0 or 2

7-9 402 or 412 4-9 —

10-18 Org. ADR (from) 10-12 [Org. NR (from)

19-27 Org. ADR (to) 13-15 Org. NR (to)]

28-36 Tar. ANR (from) 16-18 [Tar. NR (from)

37-45 Tar. ANR (to) 19-21 Tar. NR (to)]

46-54 Dmax (Å) 24 [NR type]

25-30 [Dmin (Å)

31-36 Dmax (Å)]

Columns

Format No. 1
Continuation Card

(if needed)

3 2

7-9 —

10-18 —

27 LOGC

3.3.5.3  Instructions 403/413 and 404/414, Box of Enclosure Add/Eliminate and Triclinic
Box of Enclosure Add/Eliminate

The 403/413 instructions allow the user to build or modify the ATOMS array by specify-
ing the contents of a box of enclosure (see 3.1.7) about any addressable point (or atom designator
run of addressable points). The three axes of the box are parallel to the three base vectors of the
reference Cartesian system, and the semidimensions of the box are specified on the instruction
card. If an orientation of the box different from the standard orientation (see 3.1.8) is desired, then
a 501 or a 502 instruction, or both, should be used before this instruction to reorient the reference
Cartesian system. After this instruction has been executed, the reference system can undergo fur-
ther reorientation as desired for plotting purposes, etc. 

The 404/414 instructions are identical to the 403/413 instructions except that the triclinic
box of enclosure is bounded by planes parallel to the principal planes of the crystal lattice. The
semidimensions a /2, b/2, c/2 refer to fractional (triclinic) coordinates. To specify the contents of
the conventional unit cell, one would use a/2 = b/2 = c/2 = .5, and the Org. ADR would refer to a
point in the input atom list at (.5,.5,.5). 

As in the case of the 402/412 instruction, the origin atom on which the box is centered
will not be included unless the target atom number run includes the origin atom number. Subrou-
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tine SEARC is used by this instruction, and the instruction input details are similar to those of
instructions 402/412 except that Dmax is replaced by the semidimension a /2 of the box and the
following fields on the card are used to specify the other two semidimensions b/2 and c /2. The
box dimensions must be chosen carefully so that the ATOMS array does not overflow. Vector
search codes on Format No. 2 continuation cards may be used for screening if desired. (See
3.1.5.)

Columns
Instructions

403/413 and 404/414 Columns

Format No. 2
Continuation Card

(if used)

3 0, 1, or 2 3 0 or 2

7-9 403, 404, 413, or 414 4-9 —

10-18 Org. ADR (from) 10-12 [Org. NR (from)

19-27 Org. ADR (to) 13-15 Org. NR (to)]

28-36 Tar. ANR (from) 16-18 [Tar. NR (from)

37-45 Tar. ANR (to) 19-21 Tar. NR (to)]

46-54 a/2 (Å or fraction) 24 [NR type]

55-63 b/2 (Å or fraction)

64-72 c/2  (Å or fraction)

Columns

Format No. 1
Continuation Card

(if needed)

3 2

7-9 —

10-18 —

27 LOGC

3.3.5.4  Instructions 405/415 and 406/416, Convoluting Sphere of Enclosure Add/Eliminate
and Reiterative Convoluting Sphere of Enclosure Add/Eliminate

These instructions are used in the same manner as instructions 105 and 106 (see 3.3.2.3).
Their function is to add atoms to or eliminate atoms from the ATOMS array. A valid origin atom
must be placed in the ATOMS array with a 401, 402, 403, or 404 instruction before these instruc-
tions are used. All atoms in the ATOMS array that have atom or feature numbers within the ori-
gin number run (Org. NR) of the instruction are used as origin points of convolution. Vector
search codes on Format No. 2 continuation cards may be used for screening if desired. (See
3.1.5.)

An example use for the 405 instruction is to complete the coordination shells around
metal atoms without having to identify the coordination shell atoms individually. Another use
might be to obtain a cluster of atoms out to the n th neighbor when only the distance to the first
neighbor is known. This can be accomplished by using n consecutive 405 instructions with Dmax
slightly more than the first neighbor distance.
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Instruction 406 is useful for describing molecular compounds where an unfortunate
choice of atoms for the input asymmetric unit does not allow the molecule to be described by a
run. Dmax must be chosen judiciously so that the search does not cross molecular boundaries.

Instruction 406 has an added feature that makes it useful for limiting the ATOMS array to
those atoms in an asymmetric unit of the unit cell. An example is the examination of electron den-
sity maps. When direct methods are used for solving crystal structures, stereoscopic drawings
provide a rapid means for screening the E maps. If the interpolated positions of the largest peaks
in the Fourier synthesis E map are taken as atom positions, then ORTEP can start at a given peak
(usually the largest) and do a reiterative sphere-of-enclosure add to isolate a molecule if one is
present. In order to terminate the convolution procedure when extraneous “bridging peaks” link
the molecules, a feature has been added to the 406 instruction to prevent multiple instances of an
atom (in any of its equivalent positions) from being entered in the ATOMS array. To invoke this
feature, a Format No. 1 continuation card with a “1” in column 18 (ASYMUNIT) is added to the
406 instruction. The 406 instruction operates in its usual manner if the continuation card is omit-
ted or has a “0” or blank in column 18.

Columns
Instructions

405/415 and 406/416 Columns

Format No. 2
Vector Search Code

(if used)

3 0, 1, or 2 3 0 or 2

7-9 405, 406, 415, or 416 4-9 —

10-18 Org. NR (from) 10-12 [Org. NR (from)

19-27 Org. NR (to) 13-15 Org. NR (to)]

28-36 Tar. NR (from) 16-18 [Tar. NR (from)

37-45 Tar. NR (to) 19-21 Tar. NR (to)]

46-54 Dmax (Å) 24 [NR type]

63 NR type 25-30 [Dmin (Å)

31-36 Dmax (Å)]

Columns

Format No. 1
Continuation Card

(if needed)

3 2

7-9 —

18 ASYMUNIT (406 only)

27 LOGC
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3.3.5.5  Instruction 410, Clear ATOMS Array

This instruction clears the ATOMS array to zero. When the program is first entered, the
array is automatically set to zero.

Columns Instruction 410

7-9 410

3.3.6  Orienting Instructions (500 Series)

For information on instruction 511, see Section 3.3.12.

Any Cartesian coordinate system is based on three orthonormal base vectors and an ori-
gin point. In the absence of any 500 instructions, ORTEP calculates the base vectors of the refer-
ence and working Cartesian systems (see 3.1.8) from the input cell parameters and sets the origin
to (0.,0.,0.).

This series of instructions can be used to reorient the reference and working Cartesian
systems. Each time the reference system is redefined or rotated, the working system is automati-
cally made coincident with the reference system. The working system can be displaced from the
reference system by rotating about the x  or y axis of the reference system with a 503 instruction.
The working system is always positioned from the reference system and does not depend on any
previous working system orientation. After each 500 series instruction, the base vectors of the
relevant Cartesian system are printed in the ORTEP output file. These vectors are based on the
triclinic coordinate system. The postfactor transformation matrix for converting from triclinic
coordinates to Cartesian coordinates is also printed out. The inverse transformation matrix may be
formed by placing the three base vectors together in row vector form.

3.3.6.1  Instruction 501, Explicit Reference Cartesian System Assignment

Instruction 501 allows the user to define the reference Cartesian system explicitly. The
origin point in the model (ORGN) is specified with an atom designator code. The three ortho-
normal base vectors can be described by two non-collinear vectors, and ORTEP provides the two
following separate techniques for performing this operation, using vector cross products of the
two vectors u  and v . Type 1 produces base vectors that are roughly along the general triclinic
coordinate axes of the crystal.

Type 0 Type 1

Base vector 1 (x  axis) u u

Base vector 2 (y  axis) u  × v (u × v) × u

Base vector 3 (z  axis) u × (u × v) u  × v

The reference system x  and y axes will parallel the plotter x and y  axes, and the origin
point ORGN will lie in the plane of the plotter. The viewer will be looking into the z  axis vector
of the coordinate system from the viewing distance set by the 301 instruction (see 3.3.4.1)
directly above the origin point.
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Columns Instruction 501
Effective

Primer Constant

7-9 501 —

10-18 ORGN (ADC) 000000

19-27 Vector u (from ADC) 155501

28-36 Vector u (to ADC) 165501

37-45 Vector v (from ADC) 155501

46-54 Vector v (to ADC) 156501

55-63 — —

72 Type 1

3.3.6.2  Instruction 502, Reference Cartesian System Rotation

The crystal model can be given any desired orientation with a series of rotations of the
model about the reference system axes. In general, three rotations (e.g., those of an Eulerian sys-
tem) are sufficient to achieve any orientation, but for convenience an unlimited number of rota-
tions are permitted by ORTEP. In addition, rotations of 120° about the body diagonal of the refer-
ence Cartesian system are permitted (achieved by a cyclic permutation of reference base vectors).

Each operation requires two fields on the instruction card. For axial rotations, the first
field of each pair will have the number 1, 2, or 3 to indicate rotation about the x, y, or z axis of the
reference system, respectively. The second field will have the rotation angle in degrees for a
right-handed rotation of the model about the designated axis (i.e., a positive angle signifies a
counterclockwise rotation of the structure with the designated axis pointing toward the observer).
The body diagonal rotation is designated by either a -1 or a -2 in the first field to indicate a 120°
or a 240° right-handed rotation about the body diagonal, respectively, and the second field is
blank. A -3 would rotate the structure completely around and thus not change its previous orienta-
tion. If desired, each rotation can be executed with a separate 502 instruction card.

Columns Instruction 502

3 0 (or 1 if continued)

7-9 502

17-18 1, 2, 3, -1, or -2

19-27 φ (˚) (if value in previous field is positive)

28-36
[…]

37-45

46-54
[…]

55-63

3.3.6.3  Instruction 503, Working Cartesian System Rotation (Stereoscopic Rotation)

To define an orientation of the working system that is not coincident with the reference
system, a 503 instruction may be used, which allows one rotation about one axis of the reference
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system. Actually any number of successive rotations can be made, but the effect is not cumulative
since the starting point for each rotation is always the reference system. Body diagonal rotations
are not permitted.

A 503 rotation normally precedes each member of a stereoscopic pair of plots. (See
3.3.6.4 and 5.4.) The rotation is about axis 2 if the stereo pair is to be viewed with the x axis par-
allel to the observer’s interocular line and about axis 1 if the y axis is to be parallel to that line. 

Columns Instruction 503

7-9 503

18 1 or 2

19-27 ω (˚)

3.3.6.4 Instruction 504, Reference Cartesian System Origin Translation

Instruction 504 is used to translate the origin of the reference Cartesian system along the
x, y , and z  axes of the reference system. Stereo by translation of origin can be achieved with
instruction 504, which may be used in place of the 503 instruction. However, the 504 instruction
should not be used when the ellipsoids have internal structure because the octants selected for
shading may not be the same on both stereo views. (See 5.4.)

Columns Instruction 504

7-9 504

10-18 Translation along x  axis (in.)

19-27 Translation along y  axis (in.)

28-36 Translation along z axis (in.)

3.3.6.5  Instruction 505, Reference Cartesian System Origin at Centroid

This instruction finds the first moment (i.e., centroid or center of gravity) of the atoms in
the ATOMS array and makes this point the origin point (ORGN) of the reference and working
coordinate systems. The base vectors of the coordinate systems are unchanged from their previ-
ous values. A weighting scheme and screening may be applied to the atoms used to calculate the
centroid by using Format No. 2 trailer cards. If no trailer cards are used, all atom positions are
entered with unit weights.

Columns Instruction 505 Columns

Format No. 2
Continuation Card

(if used)

3 0 or 2 3 0 or 2

7-9 505 10-12 NR (from)

13-15 NR (to)

24 NR type

25-30 Weight
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3.3.6.6  Instruction 506, Reference Cartesian System Origin at Centroid and Inertial Axis
Coordinate System

The calculation described for instruction 505 is performed; then the second moment
matrix about the centroid is calculated, and the reference and working coordinate systems are set
up along the principal axes of this matrix. This principal axis system of coordinates is along the
inertial axes of the configuration of atoms in the ATOMS array. The x axis is along the long axis
of the configuration (i.e., the minimal axis of inertia) and the z axis is along the short axis of the
configuration (i.e. the maximal axis of inertia). The overlap along the z-view direction is often
minimized by this option. Furthermore, the xy  plane is the least-squares best plane for the atomic
configuration. Format No. 2 trailer cards may be used to supply weights and screening.

Columns
Instruction

506 Columns

Format No. 2
Continuation Card

(if used)

3 0 or 2 3 0 or 2

7-9 506 4-9 —

10-12 NR (from)

13-15 NR (to)

24 NR type

25-30 Weight

3.3.7  Positioning and Scaling Instructions (600 Series)

These instructions are used to direct the placement of the origin point ORGN (specified
by instruction 501, 505, or 506) onto the drawing (dimensioned by instruction 301). In addition
the three-dimensional assembly of atoms (chosen by the 400 series instruction) constituting the
model is scaled. The atomic centers of the model will then be hanging in space above and below
the drawing board, correctly positioned to be projected from the eye point described with instruc-
tion 301.

A second scaling parameter SCAL2 scales the ellipsoid (or sphere) size. It is a
dimensionless scale factor ratio used to modify all rms displacement values before plotting equi-
probability ellipsoids or spheres. A listing of SCAL2 values vs. probability is given in Table 6.1.
The primer constant for SCAL2 is 1.54, corresponding to 50% probability. ORTEP-III saves the
user the time of looking up the SCAL2 value corresponding to a desired probability. If the value
entered in columns 37-45 is a negative whole number in the range -1 to -99, it is interpreted as the
probability of the ellipsoids or spheres, and the value of SCAL2 is set by the program by table
lookup, using the values in Table 6.1.
 
3.3.7.1  Normal Modes of Positioning and Scaling

Several normal modes of operation are available to the user for positioning and scaling
the model. Instruction 601 requires the user to supply a complete explicit description of position
(X0,Y0) and scale (SCAL1). At the other extreme, instruction 604 automatically scales and posi-
tions the model so that the peripheral projected atom centers will touch two opposite borders and
the peripheral atoms in the remaining dimensions will be centered on the drawing. An intermedi-
ate mode is available through 602, which provides automatic scaling after explicit positioning.



45

This usually allows only one edge of the model to touch a border. Finally, instruction 603
requires an explicit scale and does automatic centering. In general, the 604 instruction is the easi-
est and safest one to use, but situations arise in which the user should not relinquish control to the
program.

If the instruction’s entry for X0, Y0, SCAL1, or SCAL2 is “0” or blank, the primer con-
stant value is used. This means that an X0 or Y0 cannot be entered as exactly zero. If zero is
wanted, a small nonzero number should be entered.

Columns
Instruc-
tion 601

Instruc-
tion 602

Instruc-
tion 603

Instruc-
tion 604

Primer
Constant

7-9 601 602 603 604 —

10-18 X0 X0 — — 8.5

19-27 Y0 Y0 — — 5.5

28-36 SCAL1 — SCAL1 — 1.0

37-45 SCAL2 or
probability

SCAL2 or
probability

SCAL2 or
probability

SCAL2 or
probability 1.54

3.3.7.2  Incremental Modes of Positioning and Scaling

Additional flexibility is provided through the incremental instructions 611, 612, and 613.
These allow the user to “nudge” the model or modify the scale factor SCAL1, or both, after the
parameters have been initially set with a previous 600 series instruction. The 611 instruction adds
∆X0, ∆Y0 to the previous X0, Y0 position for the ORGN placement and multiplies the existing
SCAL1 by ∆SCAL1 (except if ∆SCAL1 = 0, SCAL1 is unmodified). Instruction 612 increments
the position and then does an automatic scaling; 613 first increments the scale (by multiplying by
∆SCAL1) and then automatically repositions.

A conservative general approach is to follow a 604 with a 611 having ∆X0 = 0, ∆Y0 = 0
and ∆SCAL1 = 0.9. This will simply reduce the scale 10% about the origin so that there is more
space for labels, etc.

Columns Instruction 611 Instruction 612 Instruction 613

7-9 611 612 613

10-18 ∆X0 ∆X0 —

19-27 ∆Y0 ∆Y0 —

28-36 ∆SCAL1 — ∆SCAL1

37-45 SCAL2 or
probability

SCAL2 or
probability

SCAL2 or
probability

3.3.8  Atom Plotting Instructions (700 Series)

These instructions produce various representations of the atom based on the familiar ball-
and-stick molecular model. In the general case, the ball is an ellipsoid representing a contour sur-
face of equal probability density of thermal motion displacement. Alternatively, when thermal
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motion is not being portrayed, the ball can be a sphere of arbitrary dimension. The 700 series also
has provision for labeling the atomic site with the corresponding chemical symbol. The instruc-
tions in this series draw the atoms in the ATOMS array that project onto the usable part of the
drawing area, defined with the 301 instruction. Atoms found to be out of bounds are bypassed,
and a Fault Message (NG = 10) (see 3.4) is printed in the ORTEP output file. An atom is out of
bounds under the following conditions: (1) its z  coordinate in the scaled reference Cartesian sys-
tem is greater than 1/2 the viewing distance, (2) its center after projection falls outside the limit-
ing boundary of the drawing board, or (3) its projected center falls in the outermost 3/4 of the
drawing margin. (See 3.3.4.1.)

An ellipsoid, for graphical purposes in ORTEP, is considered to be composed of ellipses
and straight lines. The ellipses are of two types—principal ellipses and boundary ellipses. Rela-
tive to the viewpoint, a principal ellipse is further subdivided into a front half and a back, or hid-
den, half. There are three principal ellipses per ellipsoid, corresponding to the three principal
planes. The boundary ellipse is the edge of the ellipsoid as seen from the viewpoint. The front and
back halves of the principal ellipses meet at the boundary ellipse. The straight line segments of
the ORTEP ellipsoid are the forward principal axes, reverse principal axes, and octant-shading
lines.

Fig. 3.1 shows various combinations of these elements along with the ORTEP instruction
number and parameter values to produce each. It is obvious that certain of these combinations are
better representations than others. Instructions 701, 702, 703, and 706 generate specific ellipsoid
types as shown in Fig. 3.1. Instruction 704 draws the boundary ellipse alone. If an atom is entered
as a sphere, the boundary will be circular before projection and slightly elliptical after perspective
projection. Instruction 705 allows the user to make up any representation from the basic
components.

Chemical symbols up to six alphanumeric characters in length may be included with each
atom in the ORTEP input file. These symbols can be put onto the illustration with one 700 series
or several 900 series instructions. The 700 series places the center of the six-character field of
each atom in the same position relative to the atom center for all the drawn atoms; the 900 series
allows the user to position each symbol individually. The 700 series requires only three parame-
ters as follows: (1) symbol height in inches, (2) parallel (left/right) offset in inches, and (3) per-
pendicular (up/down) offset in inches. The parameters refer to the model before projection, and
they will change slightly during perspective projection. The parallel and perpendicular offset refer
to the exact center of the six-character input field and are relative to the lettering base line set up
with the 302 instruction. A symbol height of “0” or blank will cause the symbol drawing routine
to be bypassed. If NPLANE = 0 in a 705/715 instruction and the symbol height is greater than
zero, then chemical symbols alone are drawn on the atomic sites.
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Without back
or reverse axes

Full line
back

Dotted
back

Principal ellipses

Principal and
boundary ellipses

Principal ellipses
and axes

Principal ellipses
and axes
with boundary

Principal ellipses
and axes
with boundary and
octant shading

705
NPLANE=  3
NDOT=     0
NLINE=    0
NDASH=    0

705
NPLANE=  3
NDOT=   5
NLINE=   0
NDASH=   0

705
NPLANE=  3
NDOT=  - 1
NLINE=   0
NDASH=   0

702 705
NPLANE=  4
NDOT=   5
NLINE=   0
NDASH=   0

705
NPLANE=  4
NDOT=  - 1
NLINE=   0
NDASH=   0

705
NPLANE=  3
NDOT=     0
NLINE=    1
NDASH=    0

705
NPLANE=  3
NDOT=   5
NLINE=   1
NDASH=   3

703

701 705
NPLANE=  4
NDOT=   5
NLINE=   5
NDASH=   3

705
NPLANE=  4
NDOT=  - 1
NLINE=   5
NDASH=   3

706 705
NPLANE=  4
NDOT=   5
NLINE=   1
NDASH=   3

705
NPLANE=  4
NDOT=  - 1
NLINE=   1
NDASH=   3

Fig. 3.1.  Various combinations of ellipsoid components showing ORTEP
instruction number and parameter values to produce each.
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It is possible to vary the thickness of the boundary ellipse line by making it a function of
z, the height of the atom from the drawing board. This option is normally used with the 704
(boundary only) instruction but will work for any 700 instruction. Entries are put in the A0 and A1
fields of the instruction continuation card to specify the coefficients of

∆R(z) = A0 + A1z ,

where

∆R is the increase in radial dimension to be added to the width of the single pen line,
A0 is ∆R for an atom at z = 0, and
A1 is the rate of increase in radial dimension with z.

Example: Assume the atoms of a scaled model range from 5 in. below to 5 in.
above the drawing board and the pen width is 0.2 mm (.008 in.). If we want the
closest ellipse boundary to be five times as thick as the farthest, then ∆R(-5 in.) =
0, ∆R(5) = 0.008 × (5 – 1) = 0.032 in.; thus A0 = 0.016 in. and A1 = 0.0032 in.

The program widens the line by stepping radially in increments of DISP, which is set by
primer constant to 0. in. A 303 instruction must be used to give DISP a positive value for this line
thickening process to work.

Selected types of atoms from the ATOMS array can be drawn without having to alter the
contents of the array. This is accomplished by using a number run (NR) code that includes the
atom types that are to be drawn with a particular 700-series instruction. This feature is particu-
larly useful when two or more different atom representations are used, such as for the carbon and
hydrogen atoms in the cubane example. If no NR is entered, then all atoms in the array are drawn.

The ORTEP file output for the 701–706 instructions consists of the following:

• x,y plotter coordinates: the coordinates, in inches, for the projected atom center
on the plot, measured from the lower left-hand corner of the limiting boundary.
This is the fixed plotter coordinate system with the origin set by the plotter
driver.

• x,y,z working Cartesian coordinates: the coordinates, in inches, for the oriented
and scaled atomic model before projection. The x  and y axes parallel the plotter
x and y  axes, and the origin of the system is in the plane of the plotter at the
point x0,y0 (see 3.3.7) in plotter coordinates. The point ORGN of the scaled
model is at this point (see 3.3.6.1).

• x,y,z triclinic coordinates, in fractions of the unit-cell edges relative to the crys-
tal unit-cell origin.

• Principal axes of thermal motion, consisting of (a) principal values of root-
mean-square displacement and (b) direction cosine for principal vectors rela-
tive to the working Cartesian system.

• The atom designator code and chemical symbol for the atom.

Instructions 711–716 are identical to 701–706 except that the 71n  series suppresses all
ORTEP file output except fault messages.
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Columns

Instructions
701, 702, 703, 704, 706, 
711, 712, 713, 714, 716

Instructions
705 and 715

3 1 (if atom selection or 
boundary retracing is 
desired; otherwise 0)

1 (if atom selection or boundary 
retracing is desired; otherwise 0)

7-9 701, 702, 703, 704, 706,
711, 712, 713, 714, or 716 705 or 715

10-18 — NPLANE
= 0: no ellipsoid components
= 1: boundary ellipse only
= 3: principal ellipses only
= 4: boundary + principal ellipses

19-27 — NDOT (back side of principal ellipses)
< 0: solid line back side
= 0: back side omitted
= 3: 4 dots on back side
= 4: 8 dots on back side
= 5: 16 dots on back side
= 6: 32 dots on back side

28-36 — NLINE (forward principal axes and shading)
= 0: no forward axes or shading
= 1: forward principal axes only
= N: forward axes + (N–1) line shading

37-45 — NDASH (dashed reverse principal axes)
= 0: no reverse axes
= N: dashed reverse axes with N dashes

46-54 Symbol height (in.) Symbol height (in.)

55-63 Parallel offset (in.) Parallel offset for symbols (in.)

64-72 Perpendicular offset (in.) Perpendicular offset for symbols (in.)
  

Columns

Format No. 1
Parameter Continuation

(if used)

10-18 [A0 (in.)]

19-27 [A1 (in.)]

28-36 [NR (from)

37-45 NR (to)]

54 [NR type]
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3.3.9  Bond Plotting Instructions (800 Series)

The bond plotting instructions are grouped into two general types, explicit and implicit,
depending on how the bonds are specified. Explicit bonds require a vector designator code (see
3.1.2) for each bond. Implicit bonds make use of vector search codes (see 3.1.5) to find pairs of
atoms from the ATOMS array set up by the 400 series instructions.

There are two types of bonds that can be drawn, line bonds and stick bonds. The line
bond is a very crude, but rapid, method useful in drawing preliminary illustrations. It is construc-
ted by placing the symbol  on the two atom sites and drawing a single straight line between
them. Line bonds are always specified implicitly.

The more elaborate bond is the stick bond, which could also be called a conical bond be-
cause of its accentuated perspective taper. (The accentuated taper may be increased or decreased
by changing the value assigned to TAPER in subroutine PRIME.) Each end of the bond intersects
either an ellipsoid or an enveloping cone (tangent cone) that has its apex at the viewpoint and is
tangent to an ellipsoid. In general, the ellipsoid intersection is automatically used if the axis of the
bond intersects the ellipsoid at a point that is visible to the viewpoint; otherwise, the tangent cone
intersection is used, so that the bond appears to terminate at the boundary of the ellipsoid.
However, the user can specify that the ellipsoid intersection always be used in order to make the
skeleton type model (such as produced by the 703 instruction) appear even more transparent. The
radius of the stick bond and the number of lines used to draw the bond are specified by input
parameters.

Bond-distance labels can be drawn automatically with stick bonds but not with line
bonds. The bond-distance label numbers are in Angstrom units with one, two, or three places past
the decimal point. The bond labels on the illustration will have their base lines parallel to the stick
bonds and will be right side up for the viewer. The height of the label in inches and the perpendic-
ular offset distance for the center of the label relative to the center of the bond are parameters to
be specified by the user. With the current primer constant for FORE, if the sine of the angle
between the bond and the mean viewing vector is greater than 0.5, the lettering is done in per-
spective along the bond. When the sine of the angle is less than 0.5, the perspective lettering
would be excessively foreshortened; the lettering is then made parallel to the plane of the drawing
with its base line parallel to the projected bond. Different lettering heights and different perpen-
dicular offset distances can be assigned to the perspective and nonperspective bond-distance
labels.

All 800 instructions require Format No. 2 trailer cards to provide a number of bond para-
meters as follows:

• Bond type (for stick bonds) is designated by an integer NBOND, where -5 ≤
NBOND ≤ 5. The negative integers denote that both ends of the bonds termi-
nate at the ellipsoids. The positive integers denote bonds ending either at the
ellipsoid or the tangent cone, as described previously in this section. An entry
of zero draws no bond. A magnitude of 1 for NBOND produces two lines,
one for each bond edge, 180° apart in the plane normal to the bond axis.
Lines are drawn 90°, 45°, 22.5°, or 11.25° apart for NBOND magnitudes of
2, 3, 4, or 5, respectively. The back side of the bond is not drawn.
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• The bond radius (mean value for stick bonds) is in Angstrom units. Values
between 0.01 and 0.06 Å usually give good results. Any positive value may
be used as long as it is smaller than the scaled ellipsoid minimum semi-
dimension. The bond radius is not changed by the ellipsoid scale factor ratio
SCAL2. The bond radius should not be made “vanishingly small” (e.g., r <
0.005 Å) if the overlap feature (see 3.3.12) is used because numerical
rounding may cause incorrect hidden-line elimination.

• The height of perspective labels for bond distances is entered as zero if no
bond distances are to be labeled. Positive values denote the lettering height in
inches before projection.

• The perpendicular offset for bond distance perspective labels (in inches)
specifies the offset of the center of the distance label relative to the center of
the bond.

• The height of regular labels for bond distances is entered as zero if no bond
distances corresponding to foreshortened bonds are to be drawn. Positive
values give the lettering height in inches before projection.

• The perpendicular offset for bond-distance regular labels (in inches) specifies
the offset of the center of the distance label relative to the center of the bond.

• The significant digits indicator is -1, 0, or 1, denoting bond distance labels
with one, two, or three digits, respectively, after the decimal place.

Instructions 801, 802, and 803 differ from 811, 812, and 813 only in the ORTEP output
file listing. The second group has no output except error messages. The first group lists: plotter
coordinates in inches, scaled Cartesian coordinates (in inches) of atoms before projection, and
triclinic crystal coordinates for the atoms of each bond. The interatomic bond distance in Ang-
stroms is also listed. If an atom of a bonded pair is out of bounds, a fault message (NG = 10) is
printed in the ORTEP output file. If the bond is hidden and cannot be drawn, fault message NG =
14 is printed. Fault NG = 13 signifies that an imaginary intersection was found with a bond radius
larger than the ellipsoid semidimension. (See 3.4.)

3.3.9.1  Explicit Bonds

Explicit stick bonds are produced with the 801/811 instructions. The bonds are described
with two atom designator codes for each bond. The atom designator codes go on the 801/811 card
and on Format No. 1 trailer cards if more than three atom pairs are needed. The two atom desig-
nator codes for a bond must be in adjacent fields, but blank fields can be inserted between the
different bonds. Since there are seven fields available per card, it is a good idea to use only two,
four, or six of them so that the card sequence within the instruction (other than first and last
cards) will be unimportant. As mentioned earlier, a Format No. 2 trailer card is required.
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Columns

Instructions

801/811 Columns

Format No. 2

Continuation Card

3
2 (or 1 if more
than 3 pairs of

ADCs are needed)
3 —

7-9 801 or 811 22-24 Bond type

10-18 ADC1 (from) 37-42 Bond radius (Å)

19-27 ADC1 (to) 43-48 Perspective label height (in.)

28-36 [ADC2 (from) 49-54 Perpendicular displacement (in.)

37-45 ADC2 (to)] 55-60 Nonperspective label height (in.)

46-54 [... 61-66 Perpendicular displacement (in.)

55-63 ...] 67-72 Digits indicator

3.3.9.2 Implicit Bonds

Instructions 802/812 are used for implicit stick bonds, and 803/813 are used for implicit
line bonds. The symbol drawn on the atomic sites by the 803/813 instructions may be made larger
or smaller by redefining the SCAL2 factor, which is controlled by the 600 series of instructions
(see 3.3.7). Number run type takes a non-zero (or non-blank) value only when working with atom
“features” (see 3.1.10-12 and 4.6). At least one Format No. 2 trailer card is required.

The use of vector search code (VSC) cards for the implicit bond plotting instructions has
been extended to include a provision for drawing coordination polyhedra while suppressing the
unwanted bonds. In addition to describing the bond with origin and target number runs and the
Dmin to Dmax range, a condition can be imposed to require that both atoms must be within a speci-
fied “polyhedral distance range” of an atom in the ATOMS array that is included in a “polyhe-
dron” number run. This option is brought into play by a negative value in columns 43 to 48 of the
VSC card.

Columns

Instructions

802/812 and 803/813

3 2

7-9 802 or 812

10-18 —

27 NR type
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Instructions 802/812

Format No. 2 Vector Search Code

Instructions 803/813

Format No. 2 Vector Search Code

Columns

Positive value

in col. 43-48

Negative value

in col. 43-48

Positive value

in col. 43-48

Negative value

in col. 43-48

3 0 or 2 0 or 2 0 or 2 0 or 2

10-12 Org. NR (from) Org. NR (from) Org. NR (from) Org. NR (from)

13-15 Org. NR (to) Org. NR (to) Org. NR (to) Org. NR (to)

16-18 Tar. NR (from) Tar. NR (from) Tar. NR (from) Tar. NR (from)

19-21 Tar. NR (to) Tar. NR (to) Tar. NR (to) Tar. NR (to)

22-24 Bond type Bond type — —

25-30 Dmin (Å) Dmin (Å) Dmin (Å) Dmin (Å)

31-36 Dmax (Å) Dmax (Å) Dmax (Å) Dmax (Å)

37-42 Bond radius (Å) Bond radius (Å) — —

43-48 Perspective
label hgt. (in.)

Polyhedron
NR (from)

— Polyhedron
NR (from)

49-54 Perpendicular
displacement (in.)

Polyhedron
NR (to)

— Polyhedron
NR (to)

55-60 Nonperspective
label hgt. (in.)

Polyhedron
Dmin (Å)

— Polyhedron
Dmin (Å)

61-66 Perpendicular
displacement (in.)

Polyhedron
Dmax (Å)

— Polyhedron
Dmax (Å)

67-72 Digits indicator —

3.3.9.3  Bond Overlap

Instructions 821 and 822 are used for calculating bond/atom and bond/bond overlap
rather than for drawing bonds. These are described in Section 3.3.12.

3.3.10  Label Plotting Instructions (900 Series)

The 900 series allows the user to plot general titles up to 72 characters in length, chemi-
cal symbols up to 6 characters long, and bond length labels. The bond length labels can have two
decimal places before the decimal point and one, two, or three places after the decimal point. The
700 and 800 series instructions can plot chemical symbols and bond length labels, respectively,
but it is often desirable to position certain labels individually with the 900 series.
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ORTEP-III provides the following character set for labels:

General titles and bond length labels can be drawn either in perspective or parallel to the
plane of the drawing (nonperspective). Chemical symbols are always drawn parallel to the plane.
Instructions 913–916 produce perspective lettering, and instructions 901–906 produce regular
plane lettering.

Two vectors, the upright vector and the base-line vector, are needed to describe a letter-
ing plane. In ORTEP, the upright lettering vector is always parallel to the plane of the drawing.
For perspective lettering the base-line vector is a general vector in three dimensions. In the
nonperspective case, the base-line vector is either along the projection of a general vector or
along the vector (in the plane of the drawing) that is oriented with a 302 title rotation instruction
(theta base line). If theta is zero, then the theta base-line vector is along the plotter positive x axis.

The exact center of the label is always referred to when specifying the position of the
label. The program goes through the following steps to position the center point of the label onto
the drawing. 

(1) A point P1 is found that is either the position of atom A (columns 10-18) or
the mean of two atom positions (atom A and atom B) if an atom designator exists
in the atom B field (columns 19-27) of the instruction card. 

(2) A point P2 is found by (a) translating from P1 along the base-line vector for
the distance specified by the parallel offset and then (b) translating along the
upright vector by the perpendicular offset distance. 

(3) A point P3 is found by projecting P2 onto the plane of the drawing. 

(4) If the x edge reset is greater than 0, then x  is reset to this value. If x edge reset
is less than 0, x  is reset to the positive x plot boundary minus |x edge reset|. No
resetting is done if x edge reset equals 0. The y parameter is handled in the same
manner with y edge reset.

Instruction 901 produces a nonperspective atom label with theta base line, using the atom
label for atom A.

A nonperspective title with theta base line is drawn with the 902 instruction. The title
must be provided with the instruction on a Format No. 3 trailer card. The title should be centered
about columns 36-37 of that card. However, if the title begins in column 1, it will be centered
automatically (a new feature in ORTEP-III).
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A nonperspective general title with normal plane lettering is produced by the 903 instruc-
tion and with perspective lettering by 913. The general vector is from atom A to atom B. The title
must be provided with the instruction on a Format No. 3 trailer card. The title should be centered
about columns 36-37 of that card. If the title begins in column 1, it will be centered automatically.

Instructions 904, 905, 906, 914, 915, and 916 produce bond-length labels. The first three
are for nonperspective lettering with one, two, and three places after the decimal point, respec-
tively; and the last three are for the corresponding bond-length labels with perspective. The
general vector is from atom A to atom B. Note that the sense of the vector is important in order to
have the label right side up.

The format for the entire 900 series is as follows:

Columns 900 Instructions

3 0 (or 3 for 902, 903, and 913)

7-9 9nn (instruction number)

10-18 ADC for atom A

19-27 [ADC for atom B]

28-36 x edge reset (in.)

37-45 y edge reset (in.)

46-54 Lettering height (in.)

55-63 Parallel offset (in.)

64-72 Perpendicular offset (in.)

3.3.11  Save Sequence Instructions (1100 Series)

It is often desirable to repeat a sequence of instructions one or more times with other
instructions inserted between the repetitions. The 1100 series allows the user to do this without
the necessity of putting in duplicate sequences of instruction cards. It is not an elaborate looping
device, but it does give additional flexibility to the system.

The three instructions in this series are 1101 to start the save sequence, 1102 to terminate
the save sequence, and 1103 to execute the save sequence. All instruction cards and their trailer
cards between the 1101 and 1102 instructions are executed and saved . Each subsequent 1103
instruction then repeats all the saved instructions. There are no parameters to be entered with the
1100 series instructions.

Columns

Instructions

1101, 1102, and 1103

6-9 1101, 1102, or 1103
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3.3.12  Overlap Correction Instructions (1001, 821, 822)

(Instruction 511 in OR TEP-II2 has been renumbered to 1001 in ORTEP-III. Instruction
511 continues to work as it did in OR TEP-II,2 but users should use 1001 in the future.)

Instruction 1001 activates the hidden line removal feature of ORTEP, which corrects the
illustration for overlapping atoms and bonds. It stores the projected atom boundary ellipses for all
atoms in the ATOMS array. It is important that the contents of the ATOMS array, the scaling and
positioning, and the structure orienting parameters (controlled by the 400, 600, and 500 series of
instructions, respectively) not be changed between the 1001 instruction and the drawing of the
atoms and bonds by the 700 and 800 series of instructions. Otherwise, the projected outlines may
be destroyed or become inappropriate.

The projected outlines of bonds are approximated as quadrangles. Those of implicitly
specified bonds may be stored for overlap correction by adding Format No. 2 trailer cards to the
1001 instruction that are identical to those of the 802/812 instructions used subsequently for plot-
ting the implicit bonds. Alternatively, implicitly specified bonds may be stored with one or more
822 instructions with the Format No. 2 trailer card set. A 1001 instruction must precede the first
822. If more than one 802/812 instruction is used to draw the bonds, there probably should be a
corresponding 822 provided for each.

Explicit bonds may only be stored by using one or more 821 instructions following a
1001 instruction. These will be identical to the 801/811 instructions used subsequently for plot-
ting the explicit bonds except for the instruction number.

As currently dimensioned, the maximum numbers of projected atoms and projected
bonds that can be stored are 500 and 599, respectively. A list of the projected atoms and bonds is
given in the ORTEP output file.

The projected outline information for atoms and bonds must be recalculated for each
member of a stereo pair; consequently the 1001 and 821 or 822 instructions are usually the first
instructions within the save sequence. The old overlap information is deleted whenever a new 500
or 600 series or 1001 instruction is executed.

All details inside atoms and bonds, including chemical symbols drawn with 700 series
instructions and bond-distance labels drawn with 800 series instructions, will be corrected for
overlap. Lettering drawn by the 700 and 800 series instructions that is outside the atom or bond
boundaries will not be corrected for overlap unless the overlying atom or bond outline actually
intersects (in projection) the atom or bond being drawn. Labels and symbols drawn with the 900
series instructions will not be corrected for overlap. 

3.3.12.1  Instruction 1001, Projected Outline Storage

A constant width overlap margin (i.e., a blank strip at the intersection of overlapping ele-
ments) is included in the dimensions of each projected atom ellipse and projected bond quadran-
gle. The width of this margin (in inches) may be specified as a parameter with the 1001 instruc-
tion if desired; otherwise, the margin is set by default. The default value is calculated as follows:
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for SCAL1 < 0.25:     OVMRGN = max(0.010,  SCALll/2 × 0.05)

for SCAL1 ≥ 0.25:     OVMRGN = max(0.025,  SCALll/2 × 0.03)

Some users prefer an overlap margin of 0.0 for stereoscopic drawings.

Columns Instruction 1001

3 2 (if bonds are to be stored; otherwise 0)

6-9 1001

10-18 Overlap Margin
0:  default value (described above)
1:  0.0 in.
Value in range 0-1.0 in.

27 NR type

If the value in column 3 is “2”, Format No. 2 trailer cards are included. In general, all the
trailer cards included with the 802/812 instructions are used. (See 3.3.9 and 3.3.12.3.)

New on this card in ORTEP-III is the second parameter, which specifies the number run
type of the number runs that follow on the Format No. 2 trailer cards.

3.3.12.2  Instruction 821, Explicit Bond Outline Storage

If explicit bonds are to be stored for the overlap correction, the attached atoms must be in
the ATOMS array even though this is not a requirement for the 801/811 instructions used for plot-
ting the explicit bonds. In general, the 821 instructions will be identical to the 801/811 instruc-
tions (except for the instruction number) used subsequently for plotting the explicit bonds. (See
3.3.9.)

3.3.12.3  Instruction 822, Implicit Bond Outline Storage

Usually, the information on implicit bond outlines is stored with the 1001 card. However,
if more than 20 Format No. 2 trailer cards are needed to specify all bonds, the extra ones can be
entered with this instruction. Also, 822 instructions in addition to the 1001 may be used to treat
different atom features in different ways. In general, the 822 instructions will be identical to the
802/812 instructions (except for the instruction number) used subsequently for plotting the
implicit bonds. (See 3.3.9.)

Columns Instruction 822

3 2

7-9 822

10-18 —

27 NR type
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3.3.13  Termination Instructions (Negative Series)

The -1 instruction terminates ORTEP, exiting the program via subroutine EXITNG.

The -2 instruction terminates the current structure and reinitializes ORTEP to read
another structure from the same input file starting with a new title card. As many structures as
desired may be cascaded in the input file in this manner before exiting with a -1 instruction. The
user’s initial input about the destinations for the drawing and text output hold for the entire set of
structures. At the end of each structure, the user is offered the opportunity to save the drawing,
view it on the screen, or edit the current instruction set before proceeding to the next structure.
(See 4.1.).

Columns
Instructions

-1 and -2

8-9 -1 or -2

3.3.14  Supplementary Instructions

The instructions available in ORTEP-III have numbers less than 1200. Any instruction in
the input file with a number greater than or equal to 1200 will cause ORTEP to branch to subrou-
tine SPARE to execute the code found there. As distributed, this is a dummy subroutine contain-
ing the single FORTRAN statement RETURN. It is provided to give users a simple way to add
their own instructions without having to understand the full program logic. Subroutine SPARE
has a single parameter INST, which is the instruction number.

3.4  LIST OF FAULT INDICATORS

ORTEP checks for certain errors, and when one of these occurs, an error message,
“FAULT NG = NG ADC m” is written in the ORTEP output file. The meanings of fault indicator
number NG is explained in Table 3.1. ADC and m identify the atom code and the instruction
involved (if these are relevant). If possible, corrective measures are made by ORTEP and the cal-
culation proceeds; otherwise, the job is terminated by calling subroutine EXITNG.
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Table 3.1.  ORTEP fault indicators.

NG
Subroutine

Involved Fault Action

1 PRELIM No sentinel found after read-
ing 96 symmetry cards

Tries to read parameter cards

2 PRELIM No sentinel found after read-
ing the parameter cards for
505 atoms

Tries to read instruction cards

3 PRELIM Anisotropic temperature factor
coefficients form a matrix
which is not positive definite

EXIT after printing out all rms
principal values (imaginary
ones are listed negative)

4 ATOM, PAXES Symmetry operation number is
higher than the number of
input operations

Omit atom

5 ATOM, PAXES Atom number is higher than
the number of input atoms

Omit atom

6 EIGEN Null temperature factor matrix
or failure in bisection routine

EXIT, after printing out all
principal values

7 EIGEN Eigenvector routine failure
due to null vector

EXIT, after printing out all
principal values

8 INITSC Error initializing screen driver EXIT

9 MAIN, SPARE Unidentified instruction num-
ber

Omit faulty instruction

10 BOND, F700 Atom out of bounds Omit atom

11 F800 No vector search codes Omit instruction

12 F600, SEARC Insufficient number of atoms
in ATOMS array

EXIT

13 BOND Imaginary bond intersection
(i.e., bond larger than atom)

Omit bond

14 BOND Hidden (end-on) bond Omit bond

15 F900 Null vector as base line Omit label

16 STORE ATOMS array is full Omit all succeeding atoms

17 LAP700, LAPAB Maximum number of
projected ellipses (20) over an
atom or bond to be drawn
exceeded

Additional ellipses not
corrected for overlap

18 LAP800, LAPAB Maximum number  of quadran-
gles (30) over an atom or bond
to be drawn exceeded

Additional quadrangles
(bonds) not corrected for over-
lap
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4.  USING ORTEP-III

This section provides some general information on using ORTEP-III, and it describes
how some aspects of the program work to help users who wish to modify the program’s opera-
tion. 

4.1  USER INTERFACE

ORTEP-III is a semi-interactive program that requests certain control information from
the user while the program executes. A default value for each item is provided in square brackets,
and it will be used if the user simply hits the RETURN key (on some keyboards, the name of this
key is ENTER). When ORTEP starts, the user is asked to supply three basic items of information.

Enter instruction set file name or "exit" [TEP.IN]: 

Drawing to (1) Screen, (2) Postscript file, (3) HPGL file, or (0) Omit [1]:  

Text output to (1) File, (2) Screen, or (0) Omit [0]:

The first of these is the ORTEP input file name with a default name of TEP.IN. The user
may supply a file name or may enter “exit” or “EXIT” to stop program execution. Care must be
taken when entering a file name to match the case of the letters on those systems that distinguish
upper and lower case.

The second item requested is the destination of the ORTEP drawing with the default
being the screen.  The alternatives of an Encapsulated Postscript (EPS) file or HPGL/2 (Hewlett-
Packard Graphics Language) file are chosen if the user enters a “2” or “3”, respectively. A choice
of “2” or “3” causes ORTEP to ask about the orientation of the drawing.

(1) Portrait or (2) Landscape orientation [1]:

One further piece of information is needed for an EPS landscape drawing.

How tall is printer page in inches? [11.00]:

If the ORTEP illustration is saved in a file, the file will be named TEPnnn .PRN where
nnn  is a number starting with the value 001. The program sets the value so old illustration files
are not overwritten. Once the file name is determined by the program, the name is displayed on
the screen. If a different naming convention is preferred, the code for naming the files is in sub-
routines INITPS and INITHP.

The third main user inquiry is the destination of ORTEP’s text output. The default value
here is to omit the output. An entry of “2” displays the output on the screen. If a “1” is entered to
save the output in a file, the user is asked to supply a file name.

Enter output file name [TEP.out]:

The default name is derived from the name of the input file by adding or substituting the exten-
sion “.out”.  A different output file name may be typed in. CAUTION: If the name chosen here is
the same as an existing file, it will be overwritten. 
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Before the program exits, the user is given another opportunity to save the drawing or
view it on the screen. In addition, an option to use ORTEP’s internal editor is provided.

(1) Save drawing as Postscript file
(2) Save drawing as HPGL file
(3) Redraw structure on screen
(4) Edit instruction set
[Quit]:

The wording of the user requests and the code to handle the user input are in subroutine
UINPUT. Default values are set in subroutine DFLTS and held in COMMON DFL.

4.2  SCREEN DISPLAY OF THE ORTEP ILLUSTRATION

The screen drawing subroutines available in ORTEP-III use PGPLOT. PGPLOT is a free
graphics library developed by T. J. Pearson at the California Institute of Technology. The pack-
age is written in FORTRAN and operates on a variety of platforms. Information about PGPLOT
can be found on the World Wide Web at http://astro.caltech.edu/~tjp/pgplot or via e-mail to
tjp@astro.caltech.edu. 

PGPLOT creates a window on the screen that represents an 8 1/2 × 11 inch drawing sur-
face in landscape orientation on which ORTEP draws its illustration. After viewing the illustra-
tion, the user must click in the EXIT box with the mouse and hit RETURN to go back to the user
input dialog. If the mouse does not operate, two RETURNs should work. 

Users can interact with the illustration to identify atoms displayed on the screen. This is
done by positioning the cursor (with a mouse or with the keyboard’s arrow keys) on a displayed
atom and clicking the mouse button or typing the letter “a”. The atom’s label (if it has one) and
atom designator code are displayed. Whether a mouse will work depends on how PGPLOT oper-
ates on the particular platform. The cursor must be positioned within 1/16 inch of the atom center.
If ORTEP identifies two or more atom centers within 1/16 inch of the cursor, it will provide the
identification of the atom center closest to the cursor position along with question marks. Exer-
cise caution when atoms lie directly over or very near each other. 

4.3  PLOTTING THE ORTEP ILLUSTRATIONS

The destination of the ORTEP illustration is controlled by the value stored in the variable
NDRAW, which is set from user input in subroutine UINPUT and subsequently held in
COMMON NS. The pre-defined values for NDRAW built into ORTEP-III are listed below. Exer-
cise caution if the illustration destination code is altered. If a new destination is needed, it is prob-
ably a good idea to create a new value for NDRAW that is different from those already pro-
grammed. 

NDRAW = 0:  no illustration 

NDRAW = 1:  screen output

NDRAW = 2:  EPS file output

NDRAW = 3:  HPGL file output

NDRAW = 9:  RESERVED for future use
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Seven subroutines control the plotting of illustrations produced by ORTEP-III—F200,
PLOT, INITxx , COLRxx , PENxx , PENWxx , and ENDxx [xx  refers to a specific plotting device
(see below)]. These may be modified to produce the output required to plot the illustrations on a
variety of devices.

Subroutine F200 responds to 200 series instructions in the ORTEP input file. A 201
instruction produces a call to INITxx , which contains the specific initialization code for device xx .
Similarly, a 202 instruction with no parameters (i.e., blanks or “0”s) produces a call to ENDxx ,
which contains the device’s termination code. When a 202 instruction with one or two non-zero
parameters is received by F200, it interprets the parameters as the x- and y-shift, respectively, in
the plotting origin. These values are stored in the variables XTRANS and YTRANS, respectively,
that are held in COMMON TRFAC. (These variables are both initially set to “0” when the 201 is
received.) The 204 instruction produces a call to COLRxx  to change the color of the plot.
PENWxx is called to change the thickness of the plotted lines in response to a 205 instruction. For
compatibility with OR TEP-II,2 the 203 instruction is treated as a 201.

The illustration is produced when ORTEP calls subroutine PLOT with the arguments X,
Y, and IPEN. X and Y are the x,y position (in inches) where the plotting device’s pen should
move, and IPEN is a flag that specifies whether the pen should be down (producing a line,
IPEN=2) or up (not producing a line, IPEN=3) as it moves to its new position. These values are
sent to PENxx , which contains the specific code for device xx to handle the pen movements. The
values of XTRANS and YTRANS are added to X and Y, respectively, in PENxx .

Two functional plotting “devices” are included in the ORTEP-III distribution. These do
not actually control physical devices but instead create files containing EPS and HPGL/2 descrip-
tions of the illustrations. These files may be downloaded to printers/plotters that accept those par-
ticular page description languages. ORTEP-III itself does not  automatically download (or spool)
the files for printing/plotting. Some computer graphics programs and word processors will import
these files. The EPS specific codes are in subroutines INITPS, COLRPS, PENPS, PENWPS, and
ENDPS. The HPGL specific codes are in subroutines INITHP, COLRHP, PENHP, PENWHP,
and ENDHP. 

Since every user will not have PGPLOT, the five subroutines that control screen draw-
ing—INITSC, COLRSC, PENSC, PENWSC, and ENDSC—are not functional in the ORTEP-III
source code distribution, i.e., they are “dummy” subroutines containing only the single
FORTRAN instruction RETURN. However, on systems that have PGPLOT implemented, alter-
nate code for these five subroutines is available in the distribution and should be substituted for
the dummy versions. INITSC creates the window in which the ORTEP illustration is drawn. The
size and orientation of the window can be changed by modifying the code in INITSC. 

The PGPLOT screen driver code includes a subroutine named CURSSC that has no coun-
terpart in the EPS and HPGL drivers. This code allows users to identify atoms displayed on the
screen (see 4.2). 

4.4  INTERACTIVE EDITOR

ORTEP-III provides a simple line editor for editing the input file without exiting the pro-
gram. NOTE: Comments in the input file beginning with # will not be displayed and will not be
retained if the instruction set is saved. The editor cannot be used to create comments beginning
with #. (See 1.2.6.)
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When the editor is invoked, the instruction set from the input file is displayed on the
screen with line numbers along with the editor commands.

C=Change line #                       D=Delete line(s) # [#]
I=Insert line before #                T=Type line(s) [#] [#]
S=Save modified instruction set       O=Restore original instruction set
P=Save drawing as Postscript          H=Save drawing as HPGL
R=Redraw structure on screen          Q=Quit

(The symbol # in the editor commands stands for a line number. Brackets [ ] mean optional.)

All commands are entered as a single letter (upper or lower case) followed by 0, 1, or 2
integers, representing line numbers, separated by spaces. 

The “Q” command exits the editor and terminates ORTEP.

The “C” command requires the number of the line to be changed. The line is displayed,
and changes are typed on the line directly under it. Use the space bar and backspace key to posi-
tion the cursor where changes are to be made and type the changes. Only non-space characters
will be substituted into the original line. To substitute a space into the original line where a non-
space character exists, type the @ character at that position. The substitutions are made when the
RETURN key is pressed. 

Similarly, the “I” command requires one line number. A blank line is provided and the
user types in its contents, ending with a RETURN. 

The “D” command requires the number of at least one line to delete. If two are entered, a
block of lines is deleted. 

With no line numbers, the “T” command types the entire instruction set on the screen. It
types a single line or a block of lines if one or two line numbers, respectively, are entered.

After editing the instruction set, it may be saved in a new file with the “S” command. The
user is asked to provide the name of a file that does not already exist. 

If it is determined that editing has taken things too far afield, the original input instruction
set may be restored with the “O” command.

The “R”, “P”, and “H” commands draw the ORTEP illustration on the screen, in an EPS
file, and in an HPGL file, respectively. As a safety precaution, these three commands save a copy
of the current instruction set in a file named TEP.NEW before their respective actions are
executed.

The code that controls the editor is in subroutine EDITR.

4.5  ALTERNATE FORMATS FOR ATOMIC PARAMETERS

ORTEP-III provides a way to input atom parameters that are available in a “nonstandard”
format. If the sentinel value (column 1) on the last symmetry card in the ORTEP input file is “2”
instead of “1”, the program asks the user for the name of a file containing the atom parameters
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and branches to subroutine READIN to read the information. This subroutine may be modified
and the program recompiled to read any desired format. 

Subroutine READIN has 16 parameters as described below. Upon entry, only IU, the
input file unit number, has been set by the calling routine. All other parameters must be set in
READIN before control is returned to the calling routine. The READIN subroutine distributed
with ORTEP-III may be used to read small protein fragments (500 atoms or less) in the
Brookhaven Protein Data Bank format.  (See 7.4.)

subroutine readin(iu,chem,id1,id2,x1,x2,x3,it,is,b1,b2,b3,b4,b5,b6,btype)

chem 6-character atom label
id1,id2 feature #1, #2
x1,x2,x3 atom x,y,z position
it positional parameter type
is end-of-atoms flag (“1” for last atom, “0” for rest)
b1,b2,b3,b4,b5,b6 atom temperature factors
btype temperature factor type

4.6  ATOM “FEATURES”

In earlier versions of ORTEP, atoms could be referenced only by their numeric positions
in the input file. Thus, atom number runs (ANR) (see 3.1.4) were used to select groups of atoms
to be treated in the same manner. ORTEP-III allows two optional attributes called “features” (see
3.1.10) to be provided with each atom, and feature number runs (FNR) (see 3.1.11) can be used to
select groups of atoms having particular features. Features should prove especially useful for
polymeric materials such as proteins or nucleic acids as will be seen in the examples below.

The two atom features are stored in the INTEGER*2 variables IDENT(1,n) and
IDENT(2,n) where n  is the atom number in the input list. The first of these contains Feature #1 of
the atom and the second contains Feature #2. These can be assigned values as appropriate to the
required task. 

For typical ORTEP input, features can be entered in columns 10-18 and 19-27 on Type 0,
1, and 2 atom positional parameter cards (see 3.2.4.1). The values (or zeroes) in these fields are
read in and stored in temporary real variables. They are also truncated to integers and stored in
IDENT(1,n) and IDENT(2,n). If these fields happen to contain numeric values unrelated to fea-
ture definition, they will be ignored and will not interfere in any way with the operation of the
program. However, if commands are invoked that specifically look at feature values, ORTEP will
assume these numbers represent features of the atoms.

To illustrate this new concept, suppose a crystal contains four elements but the user
wishes to plot only the atoms of one element, say sulfur. If all the sulfur atoms are grouped
together in the input file, a single ANR would select them. If the sulfur atoms do not occur
together in the input file, several ANRs would be needed to select all of them.  In either case, the
user would have to count the atoms in the input file to determine the starting and ending position
numbers of the sulfur atoms. On the other hand, if the atomic number of each atom is recorded as
Feature #1 in the input list, a single FNR to find all atoms with the value 16 for Feature #1 would
select all sulfur atoms regardless of their positions in the input list.
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The most common use for features will probably be with macromolecules. For example,
in a protein, a feature field can be a convenient place to store a residue number or a code repre-
senting a structural feature of an amino acid. Atom parameters for these large molecules are likely
to be read into ORTEP with the subroutine READIN (see 4.5) In this case, code can be written in
READIN that sets the values of IDENT(1,n) and IDENT(2,n) directly. Another place where fea-
tures can be useful is in critical net illustrations (see 7.5) where it is advantageous to distinguish
the peak, pass, pale, and pit critical points.

To handle features, a new parameter, number run type (see 3.1.12), has been added to the
100 series, 400 series, 505, 506, 700 series, 800 series, and 1001 instructions. See the instruction
descriptions in Section 3 for the details.

Example: A protein contains 60 amino acids with a total of 500 atoms. Feature
#1 of each atom has the sequence number of the amino acid containing the atom.
Feature #2 has codes for the structural characteristics of the atom: 1 for an α -
carbon, 2 for a C=O carbon in the peptide link, 3 for a nitrogen in the peptide
link, 4 for all other atoms.

• To select all the atoms in amino acids 9-17:

           2   402   155501      500        1      500      2.0
                    9 17  9 17  1

• To select all the atoms in the protein backbone:

           2   402   155501      500        1      500      2.0
                    1  3  1  3  2

• To select all the backbone atoms in amino acids 9-17:

           1   402   155501      500        1      500      2.0
           2                       1
           2        9 17  9 17  1
                    1  3  1  3  2

• To draw all atoms in the protein:

           1   712
                                            1      500 
     

• To draw the atoms in the protein backbone:

           1   712
                                            1        3        2 

• To draw the atoms in amino acids 9-17:

           1   712
                                            9       17        1 
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• To draw the bonds between the atoms in amino acids 9-17:

           2   812                 1
                    9 17  9 17  1   0.9   2.0   .04

• To correct for overlap among the atoms and bonds in amino acids 9-17:

           2  1001                 1
                    9 17  9 17  1   0.9   2.0   .04

4.7  MODIFYING ORTEP-III

Appendix A is a listing and brief description of the subprograms that make up ORTEP-
III, and Appendix B has the same information for the major variables that are used. The entire
FORTRAN program listing is in Appendix C. This information is provided to help users who
wish to make changes to the program.
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5.  TECHNICAL DETAILS

Publications by Heading,8 Springer,9 Todd, 10 and Korn and Korn11 provide background
on many of the projective and analytical geometry concepts discussed in this section.

5.1  HOW ORTEP DRAWS ELLIPSOIDS

Fig. 3.1 illustrates various ellipsoid graphical representations that can be drawn with
ORTEP. The major components in the representations are the three principal ellipses and the
boundary (outline) ellipse. The principal ellipses have a front half and a back (hidden) half. The
entire boundary ellipse is visible.

An ellipse is approximated by connecting a series of points on the ellipse with straight
line segments. Points on an ellipse having a general orientation in three dimensions are computed;
then each of these points is projected onto the drawing board for plotting.

The basic algorithm for finding the points along a given general ellipse utilizes the prop-
erties of conjugate diameters. Assume that we have the three principal axis vectors V1, V2, V3 of
the general ellipsoid and a vector V4 from the center of the ellipsoid to the viewpoint. The vector
V5 normal to the polar plane (see Fig. 5.1), whose pole is the viewpoint, can be obtained from

V5 = A V4 , (5.1.1)

where A is the matrix for the ellipsoid that is defined by

X
T A X = d , (5.1.2)

where d is a constant.

The boundary ellipse is defined by two conjugate vectors, one of which is any vector V6
perpendicular to V5 and the second is V7, where

V7 = V5 × A V6 . (5.1.3)

The assumption made for this boundary ellipse derivation is that the view distance is large com-
pared to the ellipsoid size. Therefore, the boundary ellipse defined above always lies on the
diametral polar plane (see Fig. 5.1).

A principal ellipse that lies in the plane of the principal axis vectors Vl  and V2 will have
the third principal axis vector V3 normal to the plane of the ellipse. The intersection of this princi-
pal ellipse with the boundary ellipse is along the vector V8 where

V8 = V5 × V3 . (5.1.4)

This vector divides the front and back (hidden) sides of the principal ellipse. A vector conjugate
to V8 and in the principal plane containing V1 and V2 is V9, where

V9 = V3 × A V8 . (5.1.5)
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VECTOR NORMAL TO POLAR PLANE

ELLIPSOID

Fig. 5.1.  Polar planes formed by tangent cylinder and tangent cone.

After the conjugate vectors have been found, their lengths are adjusted to make them sat-
isfy Eq. 5.1.2 by letting X  = s I, where I  is a unit vector. Solving for s, we obtain

s = [d / (IT A I)]1/2 . (5.1.6)

A conjugate vector pair is expanded into an ellipse by subroutine RADIAL. Since an
ellipse is centrosymmetric, the two conjugate vectors and their negatives give four vectors whose
endpoints lie on the ellipse. By performing a vector sum of two adjacent vectors and dividing the
resultant vector components by 2 , we can obtain an additional vector. After doing this for all
adjacent pairs, we then have a total of eight vectors. This process can be repeated as many times
as desired except that the scaling constant will be different for each cycle. The constant is
described by

CONSTi  = 2 [   1   +  cos( π / 2 i ) ]   =   2  cos( π / 2 i + 1 )  , (5.1.7)

where i is the cycle number.

This total process may be thought of as taking a planar radial set of equally spaced unit
vectors and performing a deformation and scaling on the space in which it is described. In geome-
try, this deformation is called an affine transformation.
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Complete details on drawing ellipsoids can be obtained from the FORTRAN coding of
subroutines F700 and RADIAL.

5.2  ELLIPSE RESOLUTION

With printer/plotter resolution improvements, highly complex stereo drawings with each
image of the pair about 2.25 inches wide can now be produced directly without photographic
reduction. As a result, it has become necessary to adjust the resolution (smoothness) of the plotted
elliptical curves in ORTEP to take full advantage of the output devices’ capabilities.

ORTEP produces its ellipses by “stretching” an equal-area circle to the shape of the
ellipse. (Since ORTEP draws all its shapes with straight lines, the circle is, in fact, a polygon, and
the smoothness of the ellipse depends on the number of vertices, or spokes, in the polygon.)
ORTEP can produce circles having 16, 32, 64, and 128 spokes. The selection is a function of the
radius of the circle. The default radii for changing to circles with fewer spokes are 0.09375 in.
(128 → 64), 0.375 in. (64 →  32), and 0.75 in. (32 →  16). These default values are smaller than
those in OR TEP-II.2

The smoothness of ellipses can be altered with the new 304 instruction in ORTEP-III,
which allows the user to enter a smoothness factor. A factor of 1 sets the circle radii for changing
to other spoke angles to the default values given above. A factor less than 1 produces smoother
ellipses, and values greater than 1 produce ellipses with more “jaggies”. If the factor is 0, all ellip-
ses, regardless of their size, will be drawn from circles having 128 spokes.

Fig. 5.2 shows three groups of ellipses produced with smoothness factor settings of 3, 2,
and 0. Although perfectly smooth ellipses are the ideal, it may be necessary to balance their
appearance against the computational time to produce them and the sizes of the resultant files
containing the ORTEP illustration. Table 5.1 shows the sizes of the EPS and HPGL files of the
concentric ellipses in Fig. 5.2 as a function of the smoothness factor. Computational time was not
determined for these examples, but it may become a significant factor on slower computers.

Table 5.1.  Size of ORTEP illustration files as a 
function of ellipse smoothness factor settings.

Smoothness

Factor

Size of

EPS File
Size of

HPGL File

0. 35544 28558

0.5 29400 23566

1. 21464 17118

2. 11992 9422

3. 8408 6510

5. 7640 5886

10. 5848 4430
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Fig. 5.2. Three sets of concentric ellipses produced by ORTEP with
smoothness factor settings of 3, 2, and 0, respectively, starting from the top.

5.3  HOW ORTEP DRAWS BONDS

The major difficulty when drawing bonds is obtaining the intersection where the bond
penetrates the ellipsoid. Three quadrics are used in subroutine BOND to calculate bond intersec-
tion. These three are the ellipsoid, the tangent cylinder, and the tangent cone.

The ellipsoid is described in matrix notation as

X
T
A X  = d , (5.3.1)

where d  is a constant and X  is any vector from the center to the surface of the ellipsoid. The
matrix A  is 3 × 3 symmetrical with components aij ( i,j = 1, 2, 3).
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The elliptic cylinder tangent to the ellipsoid and with its axis along z is described by

X
T
B X = d , (5.3.2)

where

B   =   
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(5.3.3)

and d is the constant used in Eq. 5.3.1. The tangent cylinder is used when it is necessary to termi-
nate the bond at the boundary of the ellipsoid when a parallel projection is used.

To find the intersection of a cylindrical bond along Vb with radius r with either the ellip-
soid or the tangent cylinder, we proceed as follows:

l. Form a radial set of vectors Vrj of length r normal to Vb.

2. Take a unit vector I  parallel to Vb and let

Xj = Vrj + s I , (5.3.4)

where s is a constant to be determined. Substituting in Eq. 5.3.1, we obtain

s2 IT
A I + 2sVr

T
A I + Vr

T
A Vr – d = 0 ; (5.3.5)

and solving for s , we get

s   =   − V r T  A I   +   ( V r T  A I) 2   −   ( I T  A I) ( V r T  A Vr   −   d ) 
I T  A I

 . (5.3.6)

The elliptic cone that is tangent to the ellipsoid and has its apex on the viewpoint can be
obtained from the matrix A and the vector Vu, which extends from the center of the ellipsoid to
the viewpoint. This is performed in the following steps:

1. The ellipsoid is transformed with a rotation matrix to a new Cartesian frame of 
reference that has the z  axis along the view vector Vu.

2. The tangent cone can now be described as

Y
T
C Y  = 0 , (5.3.7)

where Y is a vector originating from the vertex (viewpoint) of the cone and
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  ,   K   =   d / ( V u 
T  Vu )  . (5.3.8)

3. The frame of reference is rotated back to its original orientation with a rotation 
matrix that is the inverse of the one used in step 1. Note that the origin is now
on the viewpoint rather than on the ellipsoid center.

To find the length, s , of a vector sI  extending from any point p inside the cone to the sur-
face of the cone, we let

Y = Vp + sI (5.3.9)

and obtain from Eq. 5.3.7

(Vp + sI)T C (Vp + sI) = 0 ; (5.3.10)

then solving for s, we obtain

s   =   − V p T C I   +   ( V p T C I ) 2   − ( I T C I ) ( V p T C V p ) 
I T C I 

(5.3.11)

The vector Vp from the vertex to p is formed by

Vp = -Vu + Vr , (5.3.12)

where Vr is any member of a radial set such as that described for the regular ellipsoid intersection.

5.4  OPTIMAL PARAMETERS FOR STEREOSCOPIC DRAWINGS

For optimal viewing of stereoscopic drawings, the origins of the two views should be
separated by 2.2-2.4 in. and the stereo rotation between the two should be 5°-6°.

Fig. 5.3 was created when it was common practice to produce “large” ORTEP drawings
that would be photographically reduced to give the optimal origin separation.1,2 The reduced
drawings would then typically be viewed with a stereoscope. Under these circumstances, Fig. 5.3
provides a picture of the relationship among the various parameters that must be taken into con-
sideration when producing the drawing.12,13
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PLOT BOUNDARY

14 in.

VIEW
DISTANCE

30 in.

STEREOSCOPE
FOCAL LENGTH

4.7 in.

LEFT
EYE

RIGHT
EYE

SEPARATION OF
OPTICAL CENTERS
IN STEREOSCOPE

2.56 in.

PROJECTION PLANE FOR
PHOTOGRAPHICALLY
REDUCED (4.7/30) STEREO PAIR
(2.2 in. BETWEEN EQUIVALENT
POINTS IN THE LEFT AND 
RIGHT EYE VIEWS)

1/2 OF TOTAL ROTATION ANGLE
FOR STEREO BY ROTATION
(1/2 x 4.9˚)

PROJECTION AXIS FOR STEREO BY
(a) ROTATION
(b) TRANSLATION

ORIGIN FOR STEREO BY
(a) ROTATION
(b) TRANSLATION (LEFT EYE)

PLOTTER PROJECTION PLANE
FOR STEREO BY
(a) ROTATION
(b) TRANSLATION

ORIGINAL OBJECT AND
STEREOSCOPIC IMAGE
SUPERIMPOSE IN THIS BOX

Fig. 5.3.  Geometrical relations among the stereoscopic perspective projec-
tion parameters for a typical ORTEP drawing.  

In Fig. 5.3, the available plotting area for each projection is assumed to be 14 in. horizon-
tally and at least 11 in. vertically. The scaled mathematical object is within a box 12 in. wide, 9
in. (or more) high, and 6 in. deep with the plane of the plotter halfway back into the box. The ste-
reoscopic image seen through a stereoscope with a 4.7-in. focal length and a 2.56-in. separation
between optical centers should appear superimposed on the original object. The parameters for
both “translation stereo” and “rotation stereo” are shown. The appropriate linear dimensions can
be scaled to accommodate other plotting areas and still produce the same final stereoscopic
image. 
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With the advent of high resolution printers/plotters, the need to reduce large drawings has
diminished, and high quality drawings with the optimal origin separation can be produced
directly. For those who view such drawings without the aid of a stereoscope, the viewing distance
set in ORTEP should be the actual physical distance that will be used to view the pair. If a stereo-
scope is used for viewing, the viewing distance set in ORTEP is a function of the device’s focal
length and the location of the drawing’s origin.

The cubane example in Section 2.4 can be used as a tool for determining the optimal
view distance parameter. When the stereo cubane drawing is observed under usual viewing condi-
tions, users should compare the front and back faces to decide if the molecule actually looks like
a cube. If the faces appear out of proportion with each other, adjust the view distance parameter
until the cube looks correct.

Theoretically, the best stereoscopic fidelity is obtained by translation of the origin
rather than by stereo rotation of the object; however, the comparison of results given in Fig. 5.4
shows that the differences are indeed minor and nearly impossible to detect.

A

B

C

Fig. 5.4. Stereoscopic drawings of a hexagonal lattice with different stereo-
scopic parameters. (A) Stereo rotation of 4.9˚, (B) stereo translation of 2.56 in.,
and (C) stereo rotation of 6.0˚.

The top and middle drawings of Fig. 5.4 utilize the parameters derived in Fig. 5.3 and
demonstrate that the differences predicted13 for translation and rotation stereo are not discernible
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in practice. The bottom stereo drawing illustrates the slight exaggeration in depth that occurs
when a larger stereo rotation angle is used.

Fig. 5.4A was produced with the following stereo-rotation instructions for the left and
right eye views,

503        2     2.45

503        2    -2.45

and stereo translation instructions were used for Fig. 5.4B.

504    -1.28        0        0

504     2.56        0        0

 Remember that the 504 instruction (see 3.3.6.4) changes the origin of the reference  Car-
tesian system while the 503 instruction (see 3.3.6.3) rotates the working Cartesian system. If addi-
tional drawings are to be made following a stereo translation, the reference system origin should
be returned to its original position in order to prevent confusion.

504    -1.28        0        0

Also keep in mind that the 504 instruction (see 3.3.6.4) should not be used when the ellip-
soids have internal structure because the octants selected for shading may not be the same in both
views.
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6.  MATHEMATICS OF THERMAL-MOTION PROBABILITY ELLIPSOIDS

It is convenient to develop the physical significance of the anisotropic temperature factor
with the notation and terminology of probability theory rather than with the more familiar Fourier
transform theory. The results are, of course, identical regardless of the terminology used. The rea-
son for this choice is that the literature of mathematical statistics and probability theory is some-
what neater and easier to follow. The texts by Wilks,14 Cramer,15 Miller,16 Hamilton,17 and
Lukacs and Laha18 and the handbooks by Burington and May19 and Owen20 are found to be par-
ticularly useful.

6.1
   

PROBABILITY DENSITY FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

Given three chance variables X1, X2, X3 and S, which is a region in X1, X2, X3 space, the
probability P(S) that the point (X1, X2, X3) falls in the region S  is given by

P ( S )   = I I 
S 
I φ ( X 

1 
,   X 

2 
,   X 

3 
)   dX

1   
dX

2 
 dX

3 
 . (6.1.1)

If the integration is carried over all space, then

I 
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I 
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,   X 
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)    dX
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dX

2 
 dX

3 
  =   1 . (6.1.2)

The function φ(X1, X2, X3) is called the probability density function (pdf) for the joint
distribution of X1, X2, X3. Using vector notation, we can designate the pdf as φ(X).

When the distribution is the type said to be normal or Gaussian, the pdf is

φ ( X )   =   [ det( M − 1 ) ] 1 /  2 

( 2 π ) 3 /  2 
 exp[ − 1 

2 
( X   −   X  ̂) T   M − 1 ( X   −   X  ̂) ]  . (6.1.3)

The matrix M
-1  is the inverse of the symmetrical dispersion (variance-covariance) matrix M ,

where
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 .

The symbols σ2

i
 represent the second moments or variance about the mean position X ˆ . The sym-

bols σiσjρij are the corresponding covariances and ρ  ij are the correlation coefficients.
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6.2  EQUIPROBABILITY ELLIPSOIDS

For a proper normal distribution, the quadratic form ( X   −   X ˆ ) T   M − 1 ( X   −   X ˆ )  is positive def-
inite, and a principal axis transformation (see 6.4) is possible that will make the cross correlation
coefficients ρij  = 0 ( i ≠ j). The result of the transformation is the pdf

φ ( y 
1 
,  y

2 
,  y

3 
)   =   1 

( 2 π )  3 / 2 σ 
y 
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σ 
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σ 
y 

3 

  e − Q / 2  , (6.2.1)

where
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The yi are coordinates based on the Cartesian principal axis system and σ 2 

y 
i 

 are the variances
along the principal axes, i = 1, 2, 3.

The normal probability density function is constant for points on the ellipsoid Q  = C2

where C is a constant. The probability that a random point (y1, y2, y3) in the distribution will fall
inside the ellipsoid is

P ( C )   =   ( 2 / π ) 1 / 2   
C 

I 

0 
r 2  e− r 2 / 2   dr  . (6.2.3)

This result is derived from Eqs. 6.1.1, 6.2.1, and 6.2.2 by transforming to spherical coordinates.

When C = 1.5382, P  = 0.5 and the corresponding ellipsoid is called the 50% probability
ellipsoid. Table 6.1 is a table of P  versus C  values that were calculated by integrating Eq. 6.2.3
using Gaussian quadrature. Quadruple precision calculations were required to match the values
found on page 203 of Owen’s handbook.20 

6.3 CHARACTERISTIC FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

The characteristic function Φ(T) corresponding to a trivariate distribution φ(X) is the
expected value of e i T T X , namely,

Φ ( T )   =   
4 

I 

− 4 
φ ( X ) e i T T X   d X  . (6.3.1)

For the trivariate normal pdf, Eq. 6.1.3, the corresponding characteristic function is

Φ ( T )   =  exp [   i T  T X ˆ   −   1 

2 
T T MT  ]  , (6.3.2)

where M is the variance-covariance dispersion matrix described in Section 6.1 and X ˆ  is the center
of mass of the distribution.
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Table 6.1.  Critical values for probability ellipsoids of a trivariate normal distribution.

P C P C P C

0.01 0.3389 0.41 1.3842 0.81 2.1824
0.02 0.4299 0.42 1.4013 0.82 2.2114
0.03 0.4951 0.43 1.4183 0.83 2.2416
0.04 0.5479 0.44 1.4354 0.84 2.2730
0.05 0.5932 0.45 1.4524 0.85 2.3059

0.06 0.6334 0.46 1.4695 0.86 2.3404
0.07 0.6699 0.47 1.4866 0.87 2.3767
0.08 0.7035 0.48 1.5037 0.88 2.4153
0.09 0.7349 0.49 1.5209 0.89 2.4563
0.10 0.7644 0.50 1.5382 0.90 2.5003

0.11 0.7924 0.51 1.5555 0.91 2.5478
0.12 0.8192 0.52 1.5729 0.92 2.5997
0.13 0.8447 0.53 1.5904 0.93 2.6571
0.14 0.8694 0.54 1.6080 0.94 2.7216
0.15 0.8932 0.55 1.6257 0.95 2.7955

0.16 0.9162 0.56 1.6436 0.96 2.8829
0.17 0.9386 0.57 1.6616 0.97 2.9912
0.18 0.9605 0.58 1.6797 0.98 3.1365
0.19 0.9818 0.59 1.6980 0.99 3.3682
0.20 1.0026 0.60 1.7164 0.991 3.4019

0.21 1.0230 0.61 1.7351 0.992 3.4390
0.22 1.0430 0.62 1.7540 0.993 3.4806
0.23 1.0627 0.63 1.7730 0.994 3.5280
0.24 1.0821 0.64 1.7924 0.995 3.5830
0.25 1.1012 0.65 1.8119 0.996 3.6492

0.26 1.1200 0.66 1.8318 0.997 3.7325
0.27 1.1386 0.67 1.8519 0.998 3.8465
0.28 1.1570 0.68 1.8724 0.999 4.0331
0.29 1.1751 0.69 1.8932 0.9991 4.0607
0.30 1.1932 0.70 1.9144 0.9992 4.0912

0.31 1.2110 0.71 1.9360 0.9993 4.1256
0.32 1.2288 0.72 1.9580 0.9994 4.1648
0.33 1.2464 0.73 1.9804 0.9995 4.2107
0.34 1.2638 0.74 2.0034 0.9996 4.2661
0.35 1.2812 0.75 2.0269 0.9997 4.3365

0.36 1.2985 0.76 2.0510 0.9998 4.4335
0.37 1.3158 0.77 2.0757 0.9999 4.5943
0.38 1.3330 0.78 2.1012 0.99999 5.0894
0.39 1.3501 0.79 2.1274 0.999999 5.5376
0.40 1.3672 0.80 2.1544 0.9999999 5.9503
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The crystallographic structure factor equation that incorporates general anisotropic tem-
perature factor coefficients is

F ( h )   =   3 
n 

 f
n 
( h )  exp( 2 π i h T X ˆ 

n 
)  exp( − h T B 

n 
h )  , (6.3.3)

where

h is a vector giving the Miller indices,
Xn is a vector giving the fractional unit cell coordinates of the nth atom,
Bn is the anisotropic temperature factor coefficient matrix, and
fn(h) is the atom form factor value for atom n .

If a change of variables T = 2πh is made, then Eq. 6.3.3 can be rewritten as
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The scaled anisotropic temperature factor matrix (1/2π2)B is seen to be identical with the vari-
ance-covariance dispersion matrix M in Eq. 6.3.2.

The corresponding crystal space trivariate normal pdf for any particular atom n  is

φ ( X )   =   [ 2 π 2  det ( B − 1 ) ] 1 / 2 

( 2 π ) 3 / 2 
 exp[ − π 2 ( X − X ˆ ) T   B − 1 ( X − X ˆ ) ]  ; (6.3.5)

or if M-1 = 2π2
B

-1, then

φ ( X )   =   det ( M − 1 ) 
( 2 π ) 3 / 2 

 exp[ − 1 

2 
( X − X ˆ ) T   M − 1 ( X − X ˆ ) ]  , (6.3.6)

which is identical to Eq. 6.1.3.

6.4  PRINCIPAL AXIS TRANSFORMATION

The transformation of anisotropic temperature factor coefficients (for the general triclinic
case) to principal axes of thermal motion is discussed by Waser,21 Busing and Levy,22 and Cruick-
shank et al.23

The principal axis transformation is necessary to find the thermal-motion probability ellip-
soids discussed in Section 6.2. The principal axes of the matrix M-1  in Eq. 6.3.6 are the vectors y1,
y2, y3 for which the inner vector product (yi, yi) has a stationary value subject to the constraint

(yi, M
-1

yi) = 1,      i = 1, 2, 3 . (6.4.1)

For the general triclinic crystal system, this means that the quadratic form yT
G

-1
y has a stationary

value subjected to the constraint



83

y
T
G

-1
M

-1
y = 1 (6.4.2)

where G-1  is the metric tensor with components ai · aj , where ai  · aj is the scalar vector product of
two of the three unit cell vectors. Introducing the Lagrange multiplier 1/λ leads to

G − 1   −   1 
λ 

i 

M − 1 y 
i 
  =   0      (i = 1, 2, 3) ; (6.4.3)

premultiplying by M yields

MG− 1   −   1 
λ 

i 

I y 
i 
  =   0      (i = 1, 2, 3) . (6.4.4)

Or we can do some additional rearranging and obtain

[ GM
–1 –  λiI ]yi = 0     ( i = 1, 2, 3) . (6.4.5)

Eq. 6.4.4 is equivalent to one of the results derived by Busing and Levy,22 except the λi obtained
here are the reciprocals of their λi because we are doing the principal axis transformation on M-1

while their formulation performs the transformation on M. The numerical procedure used in
ORTEP finds the eigenvalues and eigenvectors of the unsymmetrical matrix MG

-1 in Eq. 6.4.4.
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7.  ORTEP EXAMPLES

This section includes several example structures that illustrate a number of the capabili-
ties found in ORTEP-III. The ORTEP input file for each example is provided.

7.1  CELL PACKING – 5-HYDROXY-5-PHENYLNORBORNANONE

Two illustrations of 5-hydroxy-5-phenylnorbornanone are provided here.  The data were
obtained from a neutron diffraction study at room temperature.24 The first illustration shows one
complete molecule, and the second shows the contents of the unit cell.

The input file of the first structure illustrates ORTEP’s original format for the symmetry
operators. The atom parameter lines were taken directly from the output of a least squares refine-
ment, and information is included there that is not needed by ORTEP. The extra information lies
in card fields that are not required for ORTEP’s operation and is ignored by the program. Note
that the atoms are individually labeled with 901 instructions.

Fig. 7.1.  Single molecule of 5-hydroxy-5-phenylnorbornanone.

 PHENYL HYDROXYL NORBORNANONE 
   10.331   10.646   10.099      0.0 -.283810      0.0
             .0  1  0  0             .0  0  1  0             .0  0  0  1
             .0 -1  0  0             .0  0 -1  0             .0  0  0 -1
             .5 -1  0  0             .5  0  1  0             .5  0  0 -1
1            .5  1  0  0             .5  0 -1  0             .5  0  0  1
  C1      0.661000 1.000000 0.224802 0.001638 0.901515 0.0
 0.011930 0.006750 0.011647 0.000642 0.003989 0.000860           0  1  0
  C2      0.661000 1.000000 0.335043 0.050840 0.844329 0.0
 0.010432 0.007831 0.012112 0.001274 0.003947-0.000264           0  1  0
  C3      0.661000 1.000000 0.327553 0.192798 0.850375 0.0
 0.009129 0.007883 0.013469-0.000262 0.003784 0.000058           0  1  0
  C4      0.661000 1.000000 0.206609 0.213473 0.908171 0.0
 0.008568 0.006819 0.009641-0.000310 0.002118-0.001032           0  1  0
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  C5      0.661000 1.000000 0.074610 0.177193 0.796977 0.0
 0.008590 0.006732 0.008260-0.000670 0.002360 0.000103           0  1  0
  C6      0.661000 1.000000 0.091094 0.031659 0.790120 0.0
 0.011368 0.006963 0.012116-0.001403 0.003143-0.001297           0  1  0
  C7      0.661000 1.000000 0.223679 0.102901 1.010406 0.0
 0.011840 0.009377 0.008981 0.001423 0.002835 0.000648           0  1  0
  C8      0.661000 1.000000-0.053735 0.216149 0.834431 0.0
 0.008328 0.007955 0.008995-0.000100 0.002374 0.001216           0  1  0
  C9      0.661000 1.000000-0.175896 0.157400 0.769638 0.0
 0.008481 0.012396 0.011267-0.001406 0.001677 0.001394           0  1  0
  C10     0.661000 1.000000-0.296122 0.195813 0.795042 0.0
 0.008526 0.016481 0.014906-0.000226 0.002743 0.004954           0  1  0
  C11     0.661000 1.000000-0.295600 0.294171 0.886394 0.0
 0.011357 0.014259 0.016607 0.003003 0.006602 0.005712           0  1  0
  C12     0.661000 1.000000-0.175266 0.352517 0.950755 0.0
 0.012936 0.012232 0.018491 0.002923 0.008046 0.001071           0  1  0
  C13     0.661000 1.000000-0.055392 0.314579 0.925104 0.0
 0.010921 0.009871 0.014343 0.000394 0.005261-0.001410           0  1  0
  O1      0.577000 1.000000 0.414647-0.009305 0.801699 0.0
 0.014915 0.010743 0.020270 0.002523 0.008903-0.001350           0  1  0
  O2      0.577000 1.000000 0.068052 0.227607 0.664516 0.0
 0.010744 0.010771 0.008919-0.000196 0.003244 0.001269           0  1  0
  H1     -0.375000 1.000000 0.236869-0.096021 0.933996 0.0
 0.020624 0.008781 0.019162 0.002373 0.007156 0.003208           0  1  0
  H3A    -0.375000 1.000000 0.318029 0.234292 0.749440 0.0
 0.015989 0.012191 0.019604 0.000563 0.008507 0.003596           0  1  0
  H3B    -0.375000 1.000000 0.419746 0.227078 0.923493 0.0
 0.011065 0.013144 0.022925-0.001035 0.003225-0.001808           0  1  0
  H4     -0.375000 1.000000 0.205933 0.307044 0.952030 0.0
 0.012786 0.009537 0.016431-0.000243 0.003014-0.003491           0  1  0
  H6A    -0.375000 1.000000 0.092339 0.004576 0.685888 0.0
 0.019268 0.012340 0.014229-0.000125 0.002520-0.004920           0  1  0
  H6B    -0.375000 1.000000 0.009600-0.018900 0.814691 0.0
 0.014224 0.009647 0.026857-0.003061 0.006299 0.000168           0  1  0
  H7A    -0.375000 1.000000 0.316741 0.107454 1.094270 0.0
 0.016598 0.016936 0.012393 0.003607 0.001040 0.000321           0  1  0
  H7B    -0.375000 1.000000 0.138340 0.092052 1.052878 0.0
 0.017074 0.014780 0.014417 0.001660 0.007380 0.002011           0  1  0
  H9     -0.375000 1.000000-0.177376 0.080634 0.699229 0.0
 0.014017 0.019179 0.019187-0.004154 0.001724-0.005322           0  1  0
  H10    -0.375000 1.000000-0.389010 0.146805 0.746257 0.0
 0.010867 0.027857 0.025083-0.003438 0.003403 0.001062           0  1  0
  H11    -0.375000 1.000000-0.387954 0.322178 0.907661 0.0
 0.015401 0.023080 0.028789 0.005406 0.011698 0.006558           0  1  0
  H12    -0.375000 1.000000-0.172867 0.427707 1.023741 0.0
 0.021232 0.019665 0.030399 0.002995 0.013356-0.006345           0  1  0
  H13    -0.375000 1.000000 0.036386 0.362903 0.977271 0.0
 0.015325 0.017015 0.026705-0.002320 0.007502-0.010296           0  1  0
  HO2    -0.375000 1.000000 0.071033 0.317748 0.672629 0.0
10.013588 0.011864 0.013832-0.001003 0.004119 0.003274           0  1  0
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      201
      301      7.2      5.4       12      1.0
      401   155501 -2955501
      501   555501   655501   255501   255501   355501                 0
      502        2       28        1      2.7
      604                                1.00
      601      4.0      1.5
  2  1001
           1 29  1 29  3   .80   1.6   .05
      716
  2   812
           1 29  1 29  3   .80   1.6   .05
      901   155501                                 .10     -.05     -.22
      901   255501                                 .10     +.10     -.22
      901   355501                                 .10     +.17     -.22
      901   455501                                 .10     +.05    -.212
      901   555501                                 .10     -.20     -.12
      901   655501                                 .10     -.17     -.22
      901   755501                                 .10     -.25     -.03
      901   855501                                 .10    -.063     -.22
      901   955501                                 .10     -.27     -.07
      901  1055501                                 .10     +.05     -.30
      901  1155501                                 .10     -.25     -.17
      901  1255501                                 .10     +.27     +.07
      901  1355501                                 .10     -.12     +.27
      901  1455501                                 .10     +.02     -.30
      901  1555501                                 .10     +.22    -.185
      901  1655501                                 .10     0.00     +.27
      901  1755501                                 .10     +.10     -.27
      901  1855501                                 .10     +.35     +.05
      901  1955501                                 .10     0.00     +.27
      901  2055501                                 .10     +.05    -.265
      901  2155501                                 .10     -.40     +.10
      901  2255501                                 .10     +.35     0.00
      901  2355501                                 .10     -.40     0.00
      901  2455501                                 .10     -.33     -.07
      901  2555501                                 .10     0.00     -.33
      901  2655501                                 .10     -.05     -.30
      901  2755501                                 .10     +.30     +.12
      901  2855501                                 .10    +.012     +.32
      901  2955501                                 .10    -.475     0.00
      202
       -1

This second example shows the packing of the norbornanone molecules in a unit cell.
The unit cell contains four molecules, but six have been drawn. The hydrogen atoms have been
omitted for clarity, and the carbon and oxygen atoms have been drawn with different representa-
tions for easier visual identification. (The oxygen atoms are the ellipsoids with the shaded octant.)
The input shows the new format for the symmetry operators that is available in ORTEP-III. In the
atom parameters, dummy atoms have been provided for a corner of the unit cell (atom #16 at
0.,0.,0.) and one for its center (atom #17 at .5,.5,.5).
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Fig. 7.2.  Packing diagram of 5-hydroxy-5-phenylnorbornanone.

 PHENYL HYDROXYL NORBORNANONE
1  10.331   10.646   10.099      0.0 -.283810      0.0
  x,y,z
  -x,-y,-z
  1/2-x,1/2+y,1/2-z
1 1/2+x,1/2-y,1/2+z
  C1      0.661000 1.000000 0.224802 0.001638 0.901515 0.0
 0.011930 0.006750 0.011647 0.000642 0.003989 0.000860           0  1  0
  C2      0.661000 1.000000 0.335043 0.050840 0.844329 0.0
 0.010432 0.007831 0.012112 0.001274 0.003947-0.000264           0  1  0
  C3      0.661000 1.000000 0.327553 0.192798 0.850375 0.0
 0.009129 0.007883 0.013469-0.000262 0.003784 0.000058           0  1  0
  C4      0.661000 1.000000 0.206609 0.213473 0.908171 0.0
 0.008568 0.006819 0.009641-0.000310 0.002118-0.001032           0  1  0
  C5      0.661000 1.000000 0.074610 0.177193 0.796977 0.0
 0.008590 0.006732 0.008260-0.000670 0.002360 0.000103           0  1  0
  C6      0.661000 1.000000 0.091094 0.031659 0.790120 0.0
 0.011368 0.006963 0.012116-0.001403 0.003143-0.001297           0  1  0
  C7      0.661000 1.000000 0.223679 0.102901 1.010406 0.0
 0.011840 0.009377 0.008981 0.001423 0.002835 0.000648           0  1  0
  C8      0.661000 1.000000-0.053735 0.216149 0.834431 0.0
 0.008328 0.007955 0.008995-0.000100 0.002374 0.001216           0  1  0
  C9      0.661000 1.000000-0.175896 0.157400 0.769638 0.0
 0.008481 0.012396 0.011267-0.001406 0.001677 0.001394           0  1  0
  C10     0.661000 1.000000-0.296122 0.195813 0.795042 0.0
 0.008526 0.016481 0.014906-0.000226 0.002743 0.004954           0  1  0
  C11     0.661000 1.000000-0.295600 0.294171 0.886394 0.0
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 0.011357 0.014259 0.016607 0.003003 0.006602 0.005712           0  1  0
  C12     0.661000 1.000000-0.175266 0.352517 0.950755 0.0
 0.012936 0.012232 0.018491 0.002923 0.008046 0.001071           0  1  0
  C13     0.661000 1.000000-0.055392 0.314579 0.925104 0.0
 0.010921 0.009871 0.014343 0.000394 0.005261-0.001410           0  1  0
  O1      0.577000 1.000000 0.414647-0.009305 0.801699 0.0
 0.014915 0.010743 0.020270 0.002523 0.008903-0.001350           0  1  0
  O2      0.577000 1.000000 0.068052 0.227607 0.664516 0.0
 0.010744 0.010771 0.008919-0.000196 0.003244 0.001269           0  1  0
ORIGIN                           0.0      0.0      0.0
      .01
CENTER                           0.5      0.5      0.5
1
      201
      301      5.4      5.4       12      1.0
# Store unit cell corners for cell outline
      401  1655501 -1666601
# Find and store all atoms within 5.5 A of unit cell center
      402  1755501       17        1       15      5.5
# Reiterative convolution around found atoms to complete molecules
      406        1       15        1       15       2.
      501  1655501  1655501  1656501  1655501  1655601                 0
      502        3      180        1       10        2      -10         
      604
      503        2      2.7
     1101
  2  1001        1
  2        1 15  1 15  3   .80   1.6   .03
          16 16 16 16  1   10.   11.   .01
# Different representations for carbons (1-13) and oxygens (14-15)
  1   702     
                                   1       13
  1   701     
                                  14       15            
  2   802
  2        1 15  1 15  3   .80   1.6   .03
          16 16 16 16  1   10.   11.   .01
     1102
      202    2.375
      503        2     -2.7
     1103
      202
       -1

7.2  HELICAL STRUCTURE – POLY-L-ALANINE

The structure of poly-L-alanine was published by Elliott and Malcolm in 1959.25 The
Pauling and Corey right-handed alpha helix repeats after 13 turns and 47 residues and can be rep-
resented in ORTEP by 47 symmetry cards with N = 47; M = 13; L = 0, 1, …, 46; Tl, T2, T3 = 0.
The input atom list then contains the contents of one residue. In this example there are 48 symme-
try cards with operator 1 and operator 48 related by one cell translation along c.
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Fig. 7.3.  47/13 α-Helix of poly-L-alanine. The thin “vertical” lines between nitrogen and
oxygen atoms indicate a hydrogen bond path.
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  POLY-L-ALANINE  47/13 HELIX      ELLIOTT AND MALCOLM (1959)  
     8.55     8.55     70.3      90.      90.     120.
                                                                 0 13 47
                                                                 1 13 47
                                                                 2 13 47
                                                                 3 13 47
                                                                 4 13 47
                                                                 5 13 47
                                                                 6 13 47
                                                                 7 13 47
                                                                 8 13 47
                                                                 9 13 47
                                                                10 13 47
                                                                11 13 47
                                                                12 13 47
                                                                13 13 47
                                                                14 13 47
                                                                15 13 47
                                                                16 13 47
                                                                17 13 47
                                                                18 13 47
                                                                19 13 47
                                                                20 13 47
                                                                21 13 47
                                                                22 13 47
                                                                23 13 47
                                                                24 13 47
                                                                25 13 47
                                                                26 13 47
                                                                27 13 47
                                                                28 13 47
                                                                29 13 47
                                                                30 13 47
                                                                31 13 47
                                                                32 13 47
                                                                33 13 47
                                                                34 13 47
                                                                35 13 47
                                                                36 13 47
                                                                37 13 47
                                                                38 13 47
                                                                39 13 47
                                                                40 13 47
                                                                41 13 47
                                                                42 13 47
                                                                43 13 47
                                                                44 13 47
                                                                45 13 47
                                                                46 13 47
1                                                               47 13 47
                                1.63     94.9     -.40        3
       .1                                                     7
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                                2.29     20.7     -.81        3
       .1                                                     7
  R                             3.17       0.       0.        3
       .3                                                     7
  N                             1.49     49.7      .06        3
       .3                                                     7
  0                             1.98     104.    -1.58        3
      .35                                                     7
 ORGN                             .0        0       .5
1
# Initialize plotting
      201
# Landscape drawing orientation
      301      8.5      2.0       15      0.5
# Rotate lettering for landscape orientation
      302      -90
# Store atoms to be drawn
      401   155501  -555548
# Define coordinate system
      501   655501   155501   155601   155501   165501
# Rotate structure for landscape orientation
      502        1      90.
# Automatic position and scale
      604
# Shift plot origin for left eye view
      202        0        5
# Stereo rotation for left eye view
      503        1      2.5
# Start save sequence
     1101
# Calculate overlap
  2  1001
  2        1  5  1  5  1   1.1   1.6  .050
           4  4  5  5  1   2.7   3.0  .010
# Draw atoms and labels
      714                                          .07      .03
# Draw covalent bonds and inter-residue hydrogen bonds
  2   812
  2        1  5  1  5  1   1.1   1.6  .050
           4  4  5  5  1   2.7   3.0  .010
# End save sequence
     1102
# Stereo rotation for right eye view
      503        1     -2.5
# Shift plot origin for right eye view (view separation = 2.375 in.)
      202        0    2.625
# Repeat save sequence
     1103
# Terminate plotting
      202
# Terminate ORTEP
       -1
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7.3  COORDINATION POLYHEDRA – POTASSIUM PERXENATE NONAHYDRATE

The crystal structure of this hydrated ionic material was published by Zalkin et al . in
1964.26 The only covalent bonds are between the xenon and oxygen atoms in the perxenate
anions (the darker bonds in Fig. 7.4). To see better how the oxygens of the perxenate anions and
water molecules coordinate around the potassium and atoms, lines have been drawn from the
potassiums to all oxygens within a distance of 3.3 Å.
 

Fig. 7.4.  Coordination polyhedra in potassium perxenate nonahydrate.

 POTASSIUM PERXENATE 9-HYDRATE/A.ZALKIN ET AL (1964) JACS 86,3569
1   9.049   10.924   15.606      90.      90.      90.
   x,y,z
  -x,-y,1/2+z
  -x,1/2+y,z
1  x,1/2-y,1/2+z
  XE                            .249     .988     .250
      .10                                                     7
  K1                            .628     .987     .339
      .30                                                     7
  K2                            .846     .238     .958
      .30                                                     7
  K3                            .307     .227     .026
      .30                                                     7
  K4                            .877     .989     .139
      .30                                                     7
  O1                            .403     .101     .251
      .20                                                     7
  O2                            .094     .878     .253
      .20                                                     7
  O3                            .138     .096     .316
      .20                                                     7
  O4                            .176     .058     .151
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      .20                                                     7
  O5                            .323     .918     .351
      .20                                                     7
  O6                            .360     .881     .188
      .20                                                     7
  W1                            .654     .839     .190
      .20                                                     7
  W2                            .850     .136     .297
      .20                                                     7
  W3                            .873     .829     .369
      .20                                                     7
  W4                            .692     .046     .506
      .20                                                     7
  W5                            .997     .243     .111
      .20                                                     7
  W6                            .967     .980     .972
      .20                                                     7
  W7                            .376     .470     .002
      .20                                                     7
  W8                            .493     .262     .886
      .20                                                     7
  W9                            .606     .150     .124
      .20                                                     7
 ORGN                           .250     .500     .400
      .10                                                     7
                                .000     .000     .000
1     .03                                                     7
      201                                                      
      301      2.6      3.6       15     0.25
# Locate and store K and Xe atoms
      404       21       21        1        5      .13      .52      .57
# Convolute sphere of enclosure with each central atom
      405        1        5        1       20     3.30
# B axix horizontal, C axis vertical, viewed along -A axis
      501  2155501  2155501  2156501  2155501  2155601                 1
      604                                  2.
      503        2        3
     1101
  2  1001        1
  2        1  1  6 11  3   1.8   1.9   .04
           2  5  6 20  1   2.6   3.3   .01
  1   714                                          .04
                                   2       20
# Xe not labeled                                   
  1   714                   
                                   1        1
  2   812
  2        1  1  6 11  3   1.8   1.9   .04
           2  5  6 20  1   2.6   3.3   .01           
     1102
      202    2.375
      503        2       -3



95

     1103
      202           
       -1

In the following representation of the same structure shown in Fig. 7.4, only the xenon
and potassium atoms have been explicitly drawn. (The xenon atoms are the smaller circles.) The
oxygen atoms are shown implicitly as the vertices of polyhedra centered on the potassium and
xenon atoms. As in the previous case, oxygens within 3.3 Å of the potassium are treated as mak-
ing up the coordination polyhedron. Only the instruction portion of the input file is provided. The
input lines that precede these are the same as those in the previous case.

Fig. 7.5.  Coordination polyhedra in potassium perxenate nonahydrate.

      201                                                      
      301      2.6      3.6       15     0.25
# Locate and store K and Xe atoms
      404       21       21        1        5      .13      .52      .57
# Convolute sphere of enclosure with each central atom
      405        1        5        1       20     3.30
# B axix horizontal, C axis vertical, viewed along -A axis
      501  2155501  2155501  2156501  2155501  2155601                 1
      604                                  
      503        2        3
     1101
# Draw xenon and potassium atoms only
  1   714                   
                                   1        5
# Use polygon radii to limit bonds drawn
  2   813
  2        6 11  6 11      2.5   2.8          -1     1   1.8   1.9
           6 20  6 20      2.6   4.6          -2     5   2.6   3.3
     1102
      202    2.375
      503        2       -3
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     1103
      202           
       -1

7.4  ATOM FEATURES – LYSOSOME MUTANT POLYPEPTIDE

The data for this example were taken from the Protein Data Bank #216L. The header
information from that file is provided below.

HEADER    HYDROLASE(O-GLYCOSYL)                   10-MAY-94   216L      
COMPND    LYSOZYME (E.C.3.2.1.17) MUTANT WITH SER 44 REPLACED BY TRP,   
COMPND   2 CYS 54 REPLACED BY THR, CYS 97 REPLACED BY ALA (S44W,        
COMPND   3 C54T, C97A)                                                  
SOURCE    BACTERIOPHAGE T4 (MUTANT GENE DERIVED FROM THE M13            
SOURCE   2 PLASMID BY CLONING THE T4 LYSOZYME GENE)                     
AUTHOR    M.BLABER,B.W.MATTHEWS                                         
REVDAT   1   31-JUL-94 216L    0                                        
SPRSDE     31-JUL-94 216L      116L                                     
JRNL        AUTH   M.BLABER,X.-J.ZHANG,B.W.MATTHEWS                     
JRNL        TITL   STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO    
JRNL        TITL 2 SITES IN T4 LYSOZYME                                 
JRNL        REF    SCIENCE                       V. 260  1637 1993      
JRNL        REFN   ASTM SCIEAS  US ISSN 0036-8075                 0038  

Only the first 63 amino acids (500 atoms) of the protein were used for this example since
that is the size used in the dimension statements in ORTEP-III. The first 500 ATOM lines were
extracted from the PDB file and placed unaltered in a file named ATOMS.DAT. A few of the
lines are shown below.

ATOM      1  N   MET A   1      82.486  23.405  25.378  1.00 29.06      216L 127
ATOM      2  CA  MET A   1      81.291  22.758  24.885  1.00 15.78      216L 128
ATOM      3  C   MET A   1      80.495  23.789  24.150  1.00 33.32      216L 129
ATOM      4  O   MET A   1      80.951  24.925  24.017  1.00 29.09      216L 130
ATOM      5  CB  MET A   1      80.556  22.168  26.090  1.00 14.87      216L 131
ATOM      6  CG  MET A   1      79.353  21.283  25.811  1.00 44.92      216L 132
ATOM      7  SD  MET A   1      78.906  20.301  27.306  1.00 34.12      216L 133
ATOM      8  CE  MET A   1      80.536  19.686  27.844  1.00  7.96      216L 134
ATOM      9  N   ASN A   2      79.348  23.416  23.650  1.00  7.39      216L 135
ATOM     10  CA  ASN A   2      78.619  24.379  22.897  1.00 14.21      216L 136
  .              .              .              .              .              .
  .              .              .              .              .              .
  .              .              .              .              .              .
ATOM    491  CB  GLU A  62      69.880  12.430   7.589  1.00  6.64      216L 617
ATOM    492  CG  GLU A  62      70.251  11.994   6.135  1.00  1.34      216L 618
ATOM    493  CD  GLU A  62      69.487  10.795   5.671  1.00 27.84      216L 619
ATOM    494  OE1 GLU A  62      68.805  10.091   6.416  1.00 19.47      216L 620
ATOM    495  OE2 GLU A  62      69.547  10.652   4.368  1.00 34.69      216L 621
ATOM    496  N   ALA A  63      70.531  13.275  10.600  1.00 32.33      216L 622
ATOM    497  CA  ALA A  63      70.126  13.774  11.873  1.00  6.04      216L 623
ATOM    498  C   ALA A  63      70.877  15.054  12.241  1.00 55.04      216L 624
ATOM    499  O   ALA A  63      70.278  16.027  12.662  1.00 13.24      216L 625
ATOM    500  CB  ALA A  63      70.323  12.701  12.964  1.00 18.46      216L 626
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Since these atom data are not in the standard format used by ORTEP, subroutine
READIN was written to read this particular format. It is shown below. As each atom is read by
READIN, the subroutine sets the value of FEATURE #2 (id2) for the atom to the sequence num-
ber of the amino acid containing the atom. FEATURE #1 (id1) is set to a value that indicates the
type of atom:

1 peptide link N
2 alpha carbon
3 carbon of C=O in peptide link
4 oxygen of C=O in peptide link
9 all other atoms

      subroutine readin(iu,chem,id1,id2,x1,x2,x3,it,is,b1,b2,b3,b4,
     1                 b5,b6,btype)
      integer*2 id1,id2
      character*1 chain
      character*3 res
      character*4 atom
      character*6 rec
      character*8 chem
      b1=.1
      b2=0
      b3=0
      b4=0
      b5=0
      b6=0
      btype=7.
      id1=0
      id2=0
      it=2 
      read (iu,201) rec,iserno,atom,res,chain,id2,x1,x2,x3,occ,tf
  201 format(a6,i5,1x,a4,1x,a3,1x,a1,i4,4x,3f8.0,2f6.0)
      id1=9
      if (atom.eq.' N  ') id1=1
      if (atom.eq.' CA ') id1=2
      if (atom.eq.' C  ') id1=3
      if (atom.eq.' O  ') then
         id1=4
         b1=.15
      end if
      chem=atom(2:4)//res
      is=0
c *** check if another data record is available 
      read (iu,202,end=203) rec
  202 format(a6)
      backspace(iu)
      return
  203 is=1
      return  
      end
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The ORTEP input file contains the instructions for producing three different illustrations.
Each begins with a 201 instruction and ends with a 202. The second and third sets make use of
the assigned atom features to select particular atoms for drawing. In the input file, a “2” in col-
umn 1 of the final symmetry card tells ORTEP (1) that the atom data are in a separate file and (2)
to use subroutine READIN to read the data.

Fig. 7.6.  First 63 amino acids of lysosome mutant protein.

Fig. 7.7.  First 63 amino acids of lysosome mutant protein with side chains eliminated.
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Fig. 7.8.  First 13 amino acids of lysosome mutant protein, looking through α -helix.

 LYSOZYME MUTANT PROTEIN DATA BANK #216L - BLABER AND MATTHEWS
1 116.500   54.400   59.500    90.00   102.30    90.00
     X,Y,Z
     -X,Y,-Z
     X+1/2,Y+1/2,Z
2    -X+1/2,Y+1/2,-Z
# Polypeptide containing first 63 amino acids of protein.
      201
      301      5.0      3.5      15.       .4
      401   155501-50055501
      506
      502        3       90        1       35
      604                                  2.
      503        2      2.7
     1101
  2  1001                 1
  2        1  4  1  4  5   0.9   2.0   .08
  2        1  4  5  9  1   0.9   2.0   .02
           5  9  5  9  1   0.9   2.0   .02
  1   714        
                                   1        9        1
  2   812                 1
  2        1  4  1  4  5   0.9   2.0   .08
  2        1  4  5  9  1   0.9   2.0   .02
           5  9  5  9  1   0.9   2.0   .02
     1102
      202      2.3
      503        2     -2.7
     1103
      202
# 63 amino acid polypeptide with side chains eliminated.
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# The origin, axes, and scale are unchanged from above.
      201
      301      5.0      3.5      15.       .4
      410
  2   402   155501      500        1      500      2.0
                 1  4  1
      503        2      2.7
     1101
  2  1001                 1
           1  4  1  4  5   0.9   2.0   .08
  1   714        
                                   1        4        1
  2   812                 1
           1  4  1  4  5   0.9   2.0   .08
     1102
      202      2.3
      503        2     -2.7
     1103
      202
# First 13 amino acids looking through alpha helix.
      201
      301      5.0      3.5      15.       .4
      410
  2   402   155501      500        1      500      2.0
           1 13  1 13  2
      506
      502        2      100        1       15
      604                                  2.
      503        2      2.7
     1101
  2  1001                 1
  2        1  4  1  4  5   0.9   2.0   .08
  2        1  4  5  9  1   0.9   2.0   .02
           5  9  5  9  1   0.9   2.0   .02
  1   714        
                                   1       13        2
  2   812                 1
  2        1  4  1  4  5   0.9   2.0   .08
  2        1  4  5  9  1   0.9   2.0   .02
           5  9  5  9  1   0.9   2.0   .02
     1102
      503        2     -2.7
      202      2.3
     1103
      202
       -1

7.5  CRITICAL NET – SODIUM CHLORIDE

ORTEP-III can produce “critical net” illustrations that depict some canonical topological
characteristics of the global ensemble of overlapping atomic-thermal-motion Gaussian density
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functions in a crystal. Non-degenerate critical points occur where the first derivative of the global
density is zero and the second derivative is a 3 × 3 symmetric matrix with a non-zero determinant.
The signs of the three eigenvalues of the second derivative matrix specify the types of critical
points, which are termed peak (–,–,–), pass (+,–,–), pale (+,+,–) and pit (+,+,+).  Peaks correspond
to density maxima, pits to density minima, and passes and pales to saddle points in the density
function. The four types of critical points represent 0 (e.g., vertex), 1 (e.g., edge), 2 (e.g., face),
and 3 (e.g., body) dimensional cells in the topological Morse function CW complex (i.e., C for
closure finite, W for weak topology), simply called a critical net, and correspond with the number
of + signs in the sign signature for each critical point. The most gradual up-density path from a pit
to a peak follows the sequence pit → pale → pass → peak. A discussion of critical nets can be
found on the World Wide Web at http://www.ornl.gov/ortep/topology/critnet.html.

Fig. 7.9 illustrates the critical net for NaCl with the larger corner spheres representing Cl
peaks; the smaller corner spheres, Na peaks; the elongated “cigar-shaped” ellipsoids, passes; the
flattened “pancake-shaped” ellipsoids, pales; and the smallest sphere in the center, a pit. The
paths connecting the critical points, shown by the connection “bonds” in Fig. 7,9, are topologi-
cally unique. 

New in ORTEP-III is the method for specifying the orientations and sizes of the elon-
gated and flattened ellipsoids without giving their quadratic form coefficients. The temperature
factor card following the atom parameter card for a pass or pale has the format:

Columns

1 A sentinel ≠ 0 if last atom

2-9 Unique axis length (Å)

10-18 Second (and third) axis length (Å)

19-27 VDC1 (from)

28-36 VDC1 (to)

37-45 [VDC2 (from)

46-54 VDC2 (to)]

55-63 7

VDC1 is a vector parallel with the unique axis of the cigar-shaped pass or pancake-shaped pale
and VDC2 is a second vector not parallel with VDC1 such that VDC1 × VDC2 is a second princi-
pal axis of that ellipsoid. If VDC1 and VDC2 are parallel, VDC2 is replaced by a suitable lattice
translation vector. VDC 2 may be omitted from the input if desired, and the program will choose
one of the three lattice vectors for VDC2.

This example illustrates an important point about the relationship between the symmetry
operators and atom input data unrelated to the fact that this is a critical net drawing. Sodium chlor-
ide crystallizes in space group Fm3

_
m, which has 192 symmetry operators. Of these, 48 are

“unique”, and the others may be obtained from these by adding the centering translations. The
centering translations in this space group are (0,0,0), (0,.5,.5), (.5,0,.5), and (.5,.5,0). As discussed
earlier (see 3.2.3), if all the symmetry operators are not provided in the ORTEP input file, each
unique atom will require multiple entries with those centering translations added that are not pro-
vided in the symmetry cards. In this case only 48 symmetry operators have been included
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(although ORTEP-III allows a maximum of 96). As a consequence, each atom has four entries,
obtained by adding the centering translation values to the atom’s positional coordinates.  If  96
operators had been included, each atom would have required two entries. The symmetry operators
are provided in ORTEP’s original format.

Fig. 7.9.  Sodium chloride critical net.

NaCl Fm3m peak-a,b=m3m; pit c=4bar3m; pale-d=mmm; pass-e=4mm
  10.0000  10.0000  10.0000       0.       .0       0.
             0.  1  0  0             0.  0  1  0             0.  0  0  1
                 0  0  1                 1  0  0                 0  1  0
                 0  1  0                 0  0  1                 1  0  0
                 1  0  0                 0  0  1                 0  1  0
                 0  1  0                 1  0  0                 0  0  1
                 0  0  1                 0  1  0                 1  0  0
             0.  1  0  0             0.  0 -1  0             0.  0  0 -1
                 0  0 -1                 1  0  0                 0 -1  0
                 0 -1  0                 0  0 -1                 1  0  0
                 1  0  0                 0  0 -1                 0 -1  0
                 0 -1  0                 1  0  0                 0  0 -1
                 0  0 -1                 0 -1  0                 1  0  0
             0. -1  0  0             0.  0  1  0             0.  0  0 -1
                 0  0 -1                -1  0  0                 0  1  0
                 0  1  0                 0  0 -1                -1  0  0
                -1  0  0                 0  0 -1                 0  1  0
                 0  1  0                -1  0  0                 0  0 -1
                 0  0 -1                 0  1  0                -1  0  0
             0. -1  0  0             0.  0 -1  0             0.  0  0  1
                 0  0  1                -1  0  0                 0 -1  0
                 0 -1  0                 0  0  1                -1  0  0
                -1  0  0                 0  0  1                 0 -1  0
                 0 -1  0                -1  0  0                 0  0  1
                 0  0  1                 0 -1  0                -1  0  0
             0. -1  0  0             0.  0 -1  0             0.  0  0 -1
                 0  0 -1                -1  0  0                 0 -1  0
                 0 -1  0                 0  0 -1                -1  0  0
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                -1  0  0                 0  0 -1                 0 -1  0
                 0 -1  0                -1  0  0                 0  0 -1
                 0  0 -1                 0 -1  0                -1  0  0
             0. -1  0  0             0.  0  1  0             0.  0  0  1
                 0  0  1                -1  0  0                 0  1  0
                 0  1  0                 0  0  1                -1  0  0
                -1  0  0                 0  0  1                 0  1  0
                 0  1  0                -1  0  0                 0  0  1
                 0  0  1                 0  1  0                -1  0  0
             0.  1  0  0             0.  0 -1  0             0.  0  0  1
                 0  0  1                 1  0  0                 0 -1  0
                 0 -1  0                 0  0  1                 1  0  0
                 1  0  0                 0  0  1                 0 -1  0
                 0 -1  0                 1  0  0                 0  0  1
                 0  0  1                 0 -1  0                 1  0  0
             0.  1  0  0             0.  0  1  0             0.  0  0 -1
                 0  0 -1                 1  0  0                 0  1  0
                 0  1  0                 0  0 -1                 1  0  0
                 1  0  0                 0  0 -1                 0  1  0
                 0  1  0                 1  0  0                 0  0 -1
1                0  0 -1                 0  1  0                 1  0  0
  Na                              .0       .0       .0
      .10                                                     7
  Na                              .0       .5       .5
      .10                                                     7
  Na                              .5       .0       .5
      .10                                                     7
  Na                              .5       .5       .0
      .10                                                     7
b Cl                              .5       .0       .0
      .15                                                     7
b Cl                              .5       .5       .5
      .15                                                     7
b Cl                              .0       .5       .0
      .15                                                     7
b Cl                              .0       .0       .5
      .15                                                     7
c Pit                            .25      .25      .25
      .05                                                     7
c Pit                            .25      .75      .75
      .05                                                     7
c Pit                            .75      .25      .75
      .05                                                     7
c Pit                            .75      .75      .25
      .05                                                     7
  Pass                           .25      .00      .00
      .18      .04   155501   555501                          7
  Pass                           .75      .50      .00
      .18      .04   155501   555501                          7
  Pass                           .75      .00      .50
      .18      .04   155501   555501                          7
  Pass                           .25      .50      .50
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      .18      .04   155501   555501                          7
  Pale                          .250     .250     .000
      .03      .15   155501   155601                          7
  Pale                          .750     .750     .000
      .03      .15   155501   155601                          7
  Pale                          .750     .250     .500
      .03      .15   155501   155601                          7
  Pale                          .250     .750     .500
      .03      .15   155501   155601                          7
center                          .250     .250     .250
1     .02                                                     7
      201
      301      3.2      3.2       12      0.5
      404  2155501  2155501        1       20      .26      .26      .26
      501  2155501   155501   165501   155501   156501                 1
      502        2       20        1       20
      503        2      2.5
      604       0.       0.       0.     4.00
     1101
  2  1001
  2        1  8 13 16  4   2.0   3.6   .07
  2        9 12 17 20  2   2.0   2.6   .04
          13 16 17 20  1   2.0   2.6   .03
  1   716
                                   1       12
  1   712
                                  13       20
  2   812
  2        1  8 13 16  4   2.0   3.6   .07
  2        9 12 17 20  2   2.0   2.6   .04
          13 16 17 20  1   2.0   2.6   .03
     1102
      503        2     -2.5
      202    2.375
     1103
      202
       -1
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APPENDIX A

ORTEP-III SUBPROGRAMS

FUNCTION ARCCOS(X) Computes θ, the arc cosine of X in degrees; 0 ≤ θ ≤
180°.

ATOM(QA,Z) Finds the triclinic coordinates Z for the atom
described by the atom designator code QA.

AXEQB(A1,X,B1,JJJ) Solves the matrix equation A1 X = B1 for X. The
matrices B1 and X are (3,JJJ) and A1 is always
(3,3). To invert A1, make B1 an identity matrix.

AXES(U,V,X,ITYPE) Provides three orthogonal column vectors in X,
each 1 Å long, from the two vectors U and V.
ITYPE > 0: Cartesian system
ITYPE < 0: triclinic system
|ITYPE| = 1: X1 = U; X2 = (U × V); 

X3 = U × (U × V)
|ITYPE| = 2: Xl = U; X2 = (U × V) × U; 

X3 = U × V
ITYPE = 0: same as type 2 except U = a crystal

axis, V = b crystal axis.

BOND(Z1,Z2,NB,NA1,NA2) Draws a bond, described by Format No. 2 trailer
card number NB, between two atoms. Zn is atom
designator code of atom n, and NAn is number of
atom n in ATOMS array.

COLRxx(ICOLOR) Sets plot color on “device” xx to ICOLOR.

CURSSC Identifies atoms selected on screen display.

DFLTS Sets default values for items requested from user.

DIFV(X,Y,Z) Performs the vector subtraction X – Y = Z. Z may
have the same location as X or Y.

DRAW(W,DX,DY,NPEN) Interconnects ORTEP and the plot package. It also
prevents the pen from crossing the boundaries. If
the indicator ITILT in COMMON is zero, the array
W contains x and y in plotter coordinates. While
perspective lettering is being plotted, ITILT ≠ 0;
and W contains x, y, z in Cartesian coordinates,
which will be rotated and projected by DRAW to
form plotter x,y coordinates. DX and DY are
added to the plotter x and y, respectively, before
the plot package is called. NPEN = 2 for pen down
and 3 for pen up.
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EDITR Controls ORTEP line editor.

EIGEN(W,VALU,VECT) Determines the three eigenvalues VALU and the
three column eigenvectors VECT of the matrix W.
Indeterminate eigenvectors are replaced by zeros
and the fault indicator NG set to a negative value
(eigenvectors are assigned for the indeterminate
cases by PRELIM).

ENDxx Terminates plotting on “device” xx.

ERPNT(TD,N) Prints error message when a fault is found. The
arguments identify the atom designator code TD
and the instruction N involved in the fault. The
fault indicator, NG, is in COMMON.

EXITNG(ING) Prints fault indicator ING if abnormal termination
and stops program execution.

F200 Executes the 200 series instructions.

F400 Executes the 400 series instructions.

F500 Executes all 500 series instructions.

F600 Executes all 600 series instructions.

F700 Executes all 700 series instructions.

F800 Executes all 800 series instructions. Bonds to be
drawn are found by F800, then drawn by
subroutine BOND.

F900 Executes all 900 series instructions.

F1000 Executes the 1001 instruction.

FUNCTION IEND(STRING) Returns the position of the last non-space character
in a character STRING.

INITxx Initializes plotting on “device” xx.

LAP500(NTYPE) Sorts the ATOMS array, then calculates the
projected outline ellipses for all atoms in the
ATOMS array. The ellipses are stored in the
CONIC array along with the minima and maxima
in x and y for a rectangle enclosing each ellipse. If
NTYPE < 0, previous overlap information is
cleared.
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LAP700(NA,ICQ) Finds the atoms that overlap a given atom to be
drawn. The routine first checks the bounding
rectangles for intersections, then forms the cubic
discriminant from the quadratic descriptions of the
two projection ellipses. The discriminant provides a
specification for complete overlap, partial overlap,
or no overlap. A list of up to 20 interfering ellipses
is compiled. NA is the atom to be drawn. ICQ is set
> 0 if overlap exists and = -1 if not.

LAP800(NA1,NA2,ICQ) Used in the “Projected Outline Storage Step” to
store the projected quadrangles for the bonds
specified by the trailer cards of the 1001, 821, and
822 instructions. The routine also is used in the
“Area-Overlap Search Step” to find the projected
bond quadrangles that overlap a given bond to be
drawn. A list containing up to 30 interfering
quadrangles is compiled. NA1 and NA2 are the
two atoms of the bond. ICQ is set > 0 if overlap
exists and = -1 if not.

LAPAB(IQ,IA,ICQ,ITY) Finds the bonds that overlap an atom to be drawn
and the atoms that overlap a bond to be drawn. It is
used in the “Area-Overlap Search Step.” ITY > 0
checks for atom, IA, over bond, IQ, and ITY < 0
checks for bond over atom. ICQ is set > 0 if
overlap exists, = 0 for no overlap, and < 0 for
hidden atom or bond.

LAPCON(CON1,CON,Y,OVMR) Transforms conic, CON1, to plotter homogeneous
coordinate system, CON, with center at Y. OVMR
denotes overlap margin.

LAPDRW(Y,NPEN,NCQ) Checks each line segment to be drawn for
intersection with the interfering ellipses and
quadrangles and compiles a list of intersections.
The intersection list is sorted according to distance
along the line segment, and the intersection pattern
is analyzed to determine which subsegments are
visible and which are hidden. The line subsegments
are passed to the SCRIBE routine. Y is pen
position, NPEN denotes if pen is up or down, and
NCQ is set to NCOVER+NQOVER.

CHARACTER*(*) FUNCTION
MAKSYM(GP)

Returns a character string representation (xyz
notation) of a symmetry operator stored in
ORTEP’s internal representation in array GP.

MM(X,Y,Z) Performs the matrix multiplication XY = Z. The
location of Z must be different from X and Y.
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MV(X,Y,Z) Performs the matrix-vector multiplication XY = Z.
The location of Z must be different from X and Y.

NORM(X,Y,Z,ITYPE) Stores at Z a vector (not necessarily a unit vector)
perpendicular to both X and Y. The sense of Z is
that of the vector product X × Y.
ITYPE > 0: Cartesian system
ITYPE ≤ 0: triclinic system

NUMBUR(W,W2,HGT,DIST,THT,ND) Converts number to character string for placement
on the drawing. W contains coordinates of the
lower left edge of the first character, W2 is unused,
HGT is the height of the characters, DIST is the
number to be drawn, THT is the angle by which
the base line of the characters is to be rotated
counterclockwise from the positive x axis, and ND
is the number of digits to the right of the decimal
point.

ORTEP ORTEP is the MAIN program and controlling
routine that decodes the ORTEP instructions. It
either executes the command directly or calls the
appropriate subroutine to execute the instruction.

PAXES(DCODE,ITYPE) Stores the covariance (dispersion) matrix for the
thermal ellipsoid or its inverse matrix, which is the
matrix of coefficients in the quadratic form
describing the ellipsoid, in COMMON at Q for the
atom with atom designator code DCODE.
ITYPE > 0 for covariance matrix
ITYPE < 0 for ellipsoid quadratic form matrix
|ITYPE| = 1 based on triclinic system
|ITYPE| = 2 based on working Cartesian system
|ITYPE| = 3 based on reference Cartesian system

PENxx(X,Y,IPEN) Controls pen movement on “device” xx. X is the
abscissa and Y is the ordinate expressed in inches. 
IPEN=2: pen draws line as it moves
IPEN=3: pen moves without drawing line

PENWxx(PENW) Sets pen thickness on “device” xx to PENW.
PENW is provided in thousandths of an inch. The
default is 5.

PLOT(X,Y,IPEN) Calls the appropriate PENxx routine for drawing
lines on “device” xx. Parameters are sent to
PENxx.

PLTXY(X,Y) Calculates the plotter coordinates Y from the
unscaled Cartesian coordinates X. The distance to
the closest boundary of the plot is stored in the
variable EDGE in COMMON.
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PRELIM Performs all calculations to process (e.g., principal
axis transformations) and store the input
crystallographic parameters.

PRIME “Primes the program” by initializing all the
“primer parameters”.

PROJ(D,DP,X,XO,VIEW,I1,I2,I3) Used to obtain an array, DP, of plotter coordinates
from a scaled array, D, of points described in
Cartesian coordinates. X, XO, and VIEW are
parameters involved in the projection, and I1, I2, I3
are DO loop parameters for indexing through the
array.

RADIAL(ND) Generates a “radial” array (D in COMMON) of
points lying on an ellipse, given two conjugate
radius vectors of the ellipse in the array DA in
COMMON. From 8 to 128 points are generated
depending on the value of ND (1 ≤ ND ≤ 5).

READIN(IU,CHEM,ID1,ID2,X1,
X2,X3,IT,IS,B1,B2,B3,B4,B5,
B6,BTYPE)

Reads atom parameters in any format from a file.
This subroutine may be modified by the user. See
Section 4.5 for a description of the parameters.

RECYCLE Returns instruction pointer to 201 instruction and
zeroes ATOMS array.

SCRIBE(Y,NPEN) Filters out the hidden line segments and passes the
visible line segments to the DRAW routine.

SEARC Conducts an exhaustive (but educated) search to
find all points within a sphere or rectangular box.
Interatomic distances and angles are also calculated
for the 100 series.

SIMBOL(W,W2,HGT,ITXT,THT,N) Processes character strings for placement on the
drawing. W contains coordinates of the lower left
edge of the first character, W2 is unused, HGT is
the height of the characters, ITXT is the string to
be drawn, THT is the angle by which the base line
of the characters is to be rotated counterclockwise
from the positive x axis, and N is the number of
characters to be drawn.

SPARE(INST) Expands the user supplied instruction set by
responding to any INST ≥ 12. INST = instruction
/100.

STOR(TD1) Stores atom with atom designator code TD1 in (or
removes atom from) the ATOMS array. Coordi-
nates in whichever system is in use are communi-
cated to STOR via array V1 of COMMON.



112

TEPSYM(TXT,NUM,KK) Parses symmetry operator in character string
representation (xyz notation), TXT, and stores the
information in ORTEP’s internal representation.
NUM is symmetry operator number, and KK is the
component number.

TMM(X,Y,Z) Performs the matrix multiplication (X
T 

Y)
T
 = Z.  

The location of Z must be different from X and Y.

UINPUT(IN,NOUT) Controls user input. IN is input file device number,
and NOUT is output file device number.

UNITY(X,Z,ITYPE) Makes the vector Z 1 Å long and parallel to X.
The vectors X and Z may have the same location.
ITYPE > 0: Cartesian system
ITYPE < 0: triclinic system

VM(Y,X,Z) Performs the vector-matrix multiplication Y
T
X =  

ZT. The location of Z must be different from Y
and X.

FUNCTION VMV(X1,Q,X2) Performs the vector-matrix-vector multiplication
X1T Q X2 = scalar.

FUNCTION VV(X,Y) Performs the vector-vector multiplication X
T
Y =  

scalar.

XYZ(DQA,X,ITYPE) Returns in X coordinates for atom with atom
designator code DQA.
ITYPE = 0: triclinic coordinates
ITYPE = 1 or 2: working Cartesian system
coordinates
ITYPE = 3: reference Cartesian system coordinates
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APPENDIX B

GLOSSARY OF VARIABLES IN ORTEP-III COMMONS

* UNNAMED Main Common Block

A(9) Direct crystal cell parameters, a, b, c, cos α, cos β, cos γ,
α, β, γ.

AA(3,3) Metric tensor g where gij = ai · aj.

AAREV(3,3) Postfactor transformation matrix to convert coordinates
from triclinic to the reference Cartesian system.
AAREV = AA REFV.

AAWRK(3,3) Postfactor transformation matrix to convert coordinates
from triclinic to the working Cartesian system.
AAWRK = AA WRKV.

AID(3,3) Identity matrix.

REAL*8 AIN(140) Array containing the input parameters of the current
ORTEP instruction.

REAL*8 ATOMID(500) Atom designator codes of atoms in ATOMS array.

ATOMS(3,500) Temporary storage of atom coordinates in any of
several coordinate systems.

BB(3,3) Reciprocal metric tensor. BB = AA
-1

.  

P BRDR Border (margin) width in inches extending inward
from plot boundary.

CD(8,20) Holds the real values entered on a Format No. 2 trailer
card. Used in conjunction with KD array.

P CONT(5) Constants used in subroutine RADIAL.

D(3,130) Array in which three-dimensional points on an ellipse
are stored by RADIAL.

DA(3,3) Transmits conjugate vectors to RADIAL. Also used for
temporary storage.

P DISP Displacement parameter for retracing.

DP(2,130) Array in which two-dimensional points for ellipse are
stored after projection.

EDGE Distance in inches from a projected point to the closest
boundary. Set in PLTXY.



114

P FORE Cosine of critical angle between bond and Cartesian z
axis vectors for perspective bond distance labels. At
smaller angles, the labels, produced from subroutine
BOND, are drawn without perspective to prevent
excessive foreshortening.

FS(3,3,96) Rotation matrices for input symmetry operators based
on triclinic system. Used with TS array.

IN Logical unit number of input file.

P ITILT Indicator used to signal subroutine DRAW, whether or
not to do perspective labeling.

KD(5,20) Holds the integer values entered on a Format No. 2
trailer card. Used in conjunction with CD.

P LATM Number of entries in ATOMS array.

NATOM Number of input atoms.

P NCD Number of Format No. 2 trailer cards for an instruc-
tion.

P NG Fault Indicator value.

NJ Instruction number/100.

NJ2 Last two decimal digits of the instruction number
(instruction = NJ × 100 + NJ2).

NOUT Logical unit number of text output file.

NSR Logical unit number of scratch file.

NSYM Number of input symmetry operators.

P ORGN(3) Triclinic coordinates for the atom that is the origin of
the drawing (i.e., on the optic axis for the projection).

PAC(3,5) A 3 × 3 matrix produced by subroutine PAXES and
made up of three orthonormal principal axis column
vectors, based on either the working or reference
Cartesian system. Columns 4 and 5 are used in
subroutine F700 to duplicate columns 1 and 2 for ease
in indexing.

PAT(3,3) A matrix produced by subroutine PAXES and
composed of three principal axis column vectors each
1 Å long, based on the triclinic system.

Q(3,3) A matrix produced by subroutine PAXES. Contains
either the dispersion matrix or its inverse, based on
either the working or reference Cartesian systems.
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REFV(3,3) A matrix made up of three orthogonal column vectors,
each 1 Å long, based on the triclinic system. This is the
base vector triplet for the reference Cartesian
coordinate system. The transpose is the postfactor
transformation matrix for converting coordinates from
the reference orthogonal system to the triclinic system.
REFVT = AAREV-1.

P RES(4) Regulates the resolution of the plotting of a given
ellipse as a function of the longest principal axis x in
the given ellipsoid of the scaled model.

x ≥ RES(1) 128-point ellipse
RES(1) > x ≥ RES(2) 64-point ellipse
RES(2) > x ≥ RES(3) 32-point ellipse
RES(3) > x 16-point ellipse
RES(4) not used

RMS(5) The rms displacements along the principal axes in
arrays PAC and PAT.

P SCAL1 The scale of the model in inches per Angstrom before
projection.

P SCAL2 The scale factor ratio that sets the ellipsoid scale relative
to SCAL1.

P SCL SCL = SCAL1 × SCAL2.

P SYMB(3,3) A rotation matrix based on the angle THETA, which  
is set by instruction 302.

P TAPER The exaggerated bond taper parameter. The top and
bottom ends of a bond have radii: RADIUS = 1. ±
TAPER × T6 where T6 = |cosine of angle between
bond and z axis of Cartesian system|.

P THETA Angle in degrees between plot x axis and lettering base-
line vector.

CHARACTER*4 TITLE(18) Alphanumeric job title storage.

CHARACTER*4 TITLE2(18) Alphanumeric information storage for Format No. 3
trailer card.

TS(3,96) Translation vector for each input symmetry operator.
Used with FS array.

P VIEW Viewing distance in inches.

VT(3,4) Perspective title rotation matrix and translation vector.
Also used for temporary storage.

V1(4) Array to transfer data to subroutine STORE. Also used
for temporary storage.
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V2(3),V3(3),V4(3),
V5(3),V6(3)

Temporary storage.

WRKV(3,3) Same definition as for REFV except that this one is for
working Cartesian system. WRKVT = AAWRK-l . 

P XLNG(3) Elements 1 and 2 are x and y plot dimensions. Element
3 is not used.

P XO(3) Elements 1 and 2 denote the position in plotter   
coordinates (in inches) where ORGN is placed. Element
3 is used to transfer z coordinates to subroutine DRAW
when perspective lettering is used.

XT(3) Triclinic coordinates for an atom position are placed
here by subroutine XYZ.

DFL Default Values for User Input

CHARACTER*60 ATOMFI Default name of file containing atom parameters used
by subroutine READIN.

CHARACTER*4 EXT Default filename extension for ORTEP output.

FPAPLEN Default page length for drawing

IDRAW Default drawing destination indicator.

CHARACTER*60 INFILE Default input file name.

IORIENT Default orientation of drawing

IOUT Default ORTEP text output logical unit number.

NS Output Drawing Parameters

NDRAW ORTEP drawing destination indicator.
NDRAW=0: none
NDRAW=1: screen
NDRAW=2: Postscript file
NDRAW=3: HPGL file
NDRAW=9: Reserved for future use

NORIENT Orientation of drawing.

NPF Logical unit number of drawing output file.

NVAR Temporary storage.

OLAP Overlap Correction Variables

CONIC(7,500) Overlap correction ellipses describing intersection of
enveloping cones with drawing plane.
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COVER(6,20) Stores up to 20 overlapping ellipses for an atom or
bond being drawn.

KC(20) Which ellipses overlap the atom or bond being drawn.

KQ(30) Which quadrangles overlap the atom or bond being
drawn.

NCONIC Total number of projected ellipses stored for overlap
calculations.

NCOVER Number of projected ellipses over an atom or bond to
be drawn.

NQOVER Number of quadrangles over an atom or bond to be
drawn.

NQUAD Total number or projected bond quadrangles for
overlap calculations.

OVMRGN Overlapping element margin.

QOVER(3,4,30) Stores up to 30 overlapping bond quadrangles for
atom or bond being drawn.

QUAD(9,600) Overlap correction bond quadrangles projected onto
drawing plane.

SEGM(50,2) Visible segments of an ellipsoid or bond element to be
drawn.

PARMS Input Atom Parameters

CHARACTER*8 CHEM(505) Names for input atoms.

EV(3,505) Root-mean-square displacements for each principal
axis of each input atom.

INTEGER*2 IDENT(2,505) Two feature identifiers for each input atom.

P MAXATM Array size for input atoms. (Currently 505.)

P(3,505) Triclinic positional coordinates for the input atoms.

PA(3,3,505) Matrices for each input atom made up of three
orthogonal column eigenvectors each 1 Å long, based
on the triclinic system (principal axis vectors).

PS Encapsulated Postscript Output Parameters

IXMIN Minimum x value of illustration.

IXMAX Maximum x value of illustration.
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IYMIN Minimum y value of illustration.

IYMAX Maximum y value of illustration.

IXT Page translation along x.

IYT Page translation along y.

QUEUE Editor Variables

CHARACTER*73 HQUE(96) Original instruction set as read from input file.

CHARACTER*73 INQ Next instruction held in memory to be processed.

NBACK Number of lines in original instruction set as read from
input file.

NED Logical unit number of temporary file used by editor.

NEXT Line number of next instruction held in memory to be
processed.

NQUE Current number of instruction lines held in memory.

CHARACTER*73 QUE(96) Instruction lines held in memory.

TRFAC Plot Translation Factors

XTRANS Shift of plot origin along x-axis.

YTRANS Shift of plot origin along y-axis.

*Letter “P” indicates Prime Parameter (i.e., initialized in subroutine PRIME).


